Biblio
Statistical structure learning (SSL)-based approaches have been employed in the recent years to detect different types of anomalies in a variety of cyber-physical systems (CPS). Although these approaches outperform conventional methods in the literature, their computational complexity, need for large number of measurements and centralized computations have limited their applicability to large-scale networks. In this work, we propose a distributed, multi-agent maximum likelihood (ML) approach to detect anomalies in smart grid applications aiming at reducing computational complexity, as well as preserving data privacy among different players in the network. The proposed multi-agent detector breaks the original ML problem into several local (smaller) ML optimization problems coupled by the alternating direction method of multipliers (ADMM). Then, these local ML problems are solved by their corresponding agents, eventually resulting in the construction of the global solution (network's information matrix). The numerical results obtained from two IEEE test (power transmission) systems confirm the accuracy and efficiency of the proposed approach for anomaly detection.
We consider distributed Kalman filter for dynamic state estimation over wireless sensor networks. It is promising but challenging when network is under cyber attacks. Since the information exchange between nodes, the malicious attacks quickly spread across the entire network, which causing large measurement errors and even to the collapse of sensor networks. Aiming at the malicious network attack, a trust-based distributed processing frame is proposed. Which allows neighbor nodes to exchange information, and a series of trusted nodes are found using truth discovery. As a demonstration, distributed Cooperative Localization is considered, and numerical results are provided to evaluate the performance of the proposed approach by considering random, false data injection and replay attacks.
Gaussian random attacks that jointly minimize the amount of information obtained by the operator from the grid and the probability of attack detection are presented. The construction of the attack is posed as an optimization problem with a utility function that captures two effects: firstly, minimizing the mutual information between the measurements and the state variables; secondly, minimizing the probability of attack detection via the Kullback-Leibler (KL) divergence between the distribution of the measurements with an attack and the distribution of the measurements without an attack. Additionally, a lower bound on the utility function achieved by the attacks constructed with imperfect knowledge of the second order statistics of the state variables is obtained. The performance of the attack construction using the sample covariance matrix of the state variables is numerically evaluated. The above results are tested in the IEEE 30-Bus test system.
We consider the problem of enabling robust range estimation of eigenvalue decomposition (EVD) algorithm for a reliable fixed-point design. The simplicity of fixed-point circuitry has always been so tempting to implement EVD algorithms in fixed-point arithmetic. Working towards an effective fixed-point design, integer bit-width allocation is a significant step which has a crucial impact on accuracy and hardware efficiency. This paper investigates the shortcomings of the existing range estimation methods while deriving bounds for the variables of the EVD algorithm. In light of the circumstances, we introduce a range estimation approach based on vector and matrix norm properties together with a scaling procedure that maintains all the assets of an analytical method. The method could derive robust and tight bounds for the variables of EVD algorithm. The bounds derived using the proposed approach remain same for any input matrix and are also independent of the number of iterations or size of the problem. Some benchmark hyperspectral data sets have been used to evaluate the efficiency of the proposed technique. It was found that by the proposed range estimation approach, all the variables generated during the computation of Jacobi EVD is bounded within ±1.
Lithium Ion batteries usually degrade to an unacceptable capacity level after hundreds or even thousands of cycles. The continuously observed capacity fade data over time and their internal structure can be informative for constructing capacity fade models. This paper applies a mean-covariance decomposition modeling method to analyze the capacity fade data. The proposed approach directly examines the variances and correlations in data of interest and express the correlation matrix in hyper-spherical coordinates using angles and trigonometric functions. The proposed method is applied to model and predict key batteries performance metrics using testing data under various testing conditions.
Standard classification procedures of both data mining and multivariate statistics are sensitive to the presence of outlying values. In this paper, we propose new algorithms for computing regularized versions of linear discriminant analysis for data with small sample sizes in each group. Further, we propose a highly robust version of a regularized linear discriminant analysis. The new method denoted as MWCD-L2-LDA is based on the idea of implicit weights assigned to individual observations, inspired by the minimum weighted covariance determinant estimator. Classification performance of the new method is illustrated on a detailed analysis of our pilot study of authentication methods on computers, using individual typing characteristics by means of keystroke dynamics.
In adaptive processing applications, the design of the adaptive filter requires estimation of the unknown interference-plus-noise covariance matrix from secondary training data. The presence of outliers in the training data can severely degrade the performance of adaptive processing. By exploiting the sparse prior of the outliers, a Bayesian framework to develop a computationally efficient outlier-resistant adaptive filter based on sparse Bayesian learning (SBL) is proposed. The expectation-maximisation (EM) algorithm is used therein to obtain a maximum a posteriori (MAP) estimate of the interference-plus-noise covariance matrix. Numerical simulations demonstrate the superiority of the proposed method over existing methods.
Wireless channel reciprocity can be successfully exploited as a common source of randomness for the generation of a secret key by two legitimate users willing to achieve confidential communications over a public channel. This paper presents an analytical framework to investigate the theoretical limits of secret-key generation when wireless multi-dimensional Gaussian channels are used as source of randomness. The intrinsic secrecy content of wide-sense stationary wireless channels in frequency, time and spatial domains is derived through asymptotic analysis as the number of observations in a given domain tends to infinity. Some significant case studies are presented where single and multiple antenna eavesdroppers are considered. In the numerical results, the role of signal-to-noise ratio, spatial correlation, frequency and time selectivity is investigated.