Visible to the public Biblio

Filters: Keyword is numerical simulation  [Clear All Filters]
2023-09-20
Zhang, Zhe, Wang, Yaonan, Zhang, Jing, Xiao, Xu.  2022.  Dynamic analysis for a novel fractional-order malware propagation model system with time delay. 2022 China Automation Congress (CAC). :6561—6566.
The rapid development of network information technology, individual’s information networks security has become a very critical issue in our daily life. Therefore, it is necessary to study the malware propagation model system. In this paper, the traditional integer order malware propagation model system is extended to the field of fractional-order. Then we analyze the asymptotic stability of the fractional-order malware propagation model system when the equilibrium point is the origin and the time delay is 0. Next, the asymptotic stability and bifurcation analysis of the fractional-order malware propagation model system when the equilibrium point is the origin and the time delay is not 0 are carried out. Moreover, we study the asymptotic stability of the fractional-order malware propagation model system with an interior equilibrium point. In the end, so as to verify our theoretical results, many numerical simulations are provided.
2023-06-22
He, Yuxin, Zhuang, Yaqiang, Zhuang, Xuebin, Lin, Zijian.  2022.  A GNSS Spoofing Detection Method based on Sparse Decomposition Technique. 2022 IEEE International Conference on Unmanned Systems (ICUS). :537–542.
By broadcasting false Global Navigation Satellite System (GNSS) signals, spoofing attacks will induce false position and time fixes within the victim receiver. In this article, we propose a Sparse Decomposition (SD)-based spoofing detection algorithm in the acquisition process, which can be applied in a single-antenna receiver. In the first step, we map the Fast Fourier transform (FFT)-based acquisition result in a two-dimensional matrix, which is a distorted autocorrelation function when the receiver is under spoof attack. In the second step, the distorted function is decomposed into two main autocorrelation function components of different code phases. The corresponding elements of the result vector of the SD are the code-phase values of the spoofed and the authentic signals. Numerical simulation results show that the proposed method can not only outcome spoofing detection result, but provide reliable estimations of the code phase delay of the spoof attack.
ISSN: 2771-7372
2023-06-09
Zhang, Yue, Nan, Xiaoya, Zhou, Jialing, Wang, Shuai.  2022.  Design of Differential Privacy Protection Algorithms for Cyber-Physical Systems. 2022 International Conference on Intelligent Systems and Computational Intelligence (ICISCI). :29—34.
A new privacy Laplace common recognition algorithm is designed to protect users’ privacy data in this paper. This algorithm disturbs state transitions and information generation functions using exponentially decaying Laplace noise to avoid attacks. The mean square consistency and privacy protection performance are further studied. Finally, the theoretical results obtained are verified by performing numerical simulations.
2023-05-12
Zhang, Qirui, Meng, Siqi, Liu, Kun, Dai, Wei.  2022.  Design of Privacy Mechanism for Cyber Physical Systems: A Nash Q-learning Approach. 2022 China Automation Congress (CAC). :6361–6365.

This paper studies the problem of designing optimal privacy mechanism with less energy cost. The eavesdropper and the defender with limited resources should choose which channel to eavesdrop and defend, respectively. A zero-sum stochastic game framework is used to model the interaction between the two players and the game is solved through the Nash Q-learning approach. A numerical example is given to verify the proposed method.

ISSN: 2688-0938

Germanà, Roberto, Giuseppi, Alessandro, Pietrabissa, Antonio, Di Giorgio, Alessandro.  2022.  Optimal Energy Storage System Placement for Robust Stabilization of Power Systems Against Dynamic Load Altering Attacks. 2022 30th Mediterranean Conference on Control and Automation (MED). :821–828.
This paper presents a study on the "Dynamic Load Altering Attacks" (D-LAAs), their effects on the dynamics of a transmission network, and provides a robust control protection scheme, based on polytopic uncertainties, invariance theory, Lyapunov arguments and graph theory. The proposed algorithm returns an optimal Energy Storage Systems (ESSs) placement, that minimizes the number of ESSs placed in the network, together with the associated control law that can robustly stabilize against D-LAAs. The paper provides a contextualization of the problem and a modelling approach for power networks subject to D-LAAs, suitable for the designed robust control protection scheme. The paper also proposes a reference scenario for the study of the dynamics of the control actions and their effects in different cases. The approach is evaluated by numerical simulations on large networks.
ISSN: 2473-3504
2023-02-03
Liu, Weidong, Li, Lei, Li, Xiaohui.  2022.  Power System Forced Oscillation Caused by Malicious Mode Attack via Coordinated Charging. 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). :1838–1844.
For the huge charging demands of numerous electric vehicles (EVs), coordinated charging is increasing in power grid. However, since connected with public networks, the coordinated charging control system is in a low-level cyber security and greatly vulnerable to malicious attacks. This paper investigates the malicious mode attack (MMA), which is a new cyber-attack pattern that simultaneously attacks massive EV charging piles to generate continuous sinusoidal power disturbance with the same frequency as the poorly-damped wide-area electromechanical mode. Thereby, high amplitude forced oscillations are stimulated by MMA, which seriously threats the stability of power systems and the power supply of charging stations. The potential threat of MMA is clarified by investigating the vulnerability of the IoT-based coordinated charging load control system, and an MMA process like Mirai is pointed out as an example. An MMA model is established for impact analysis. A hardware test platform is built for the verification of the MMA model. Test result verified the existence of MMA and the accuracy of the MMA model.
2022-08-26
Bahrami, Mohammad, Jafarnejadsani, Hamidreza.  2021.  Privacy-Preserving Stealthy Attack Detection in Multi-Agent Control Systems. 2021 60th IEEE Conference on Decision and Control (CDC). :4194—4199.
This paper develops a glocal (global-local) attack detection framework to detect stealthy cyber-physical attacks, namely covert attack and zero-dynamics attack, against a class of multi-agent control systems seeking average consensus. The detection structure consists of a global (central) observer and local observers for the multi-agent system partitioned into clusters. The proposed structure addresses the scalability of the approach and the privacy preservation of the multi-agent system’s state information. The former is addressed by using decentralized local observers, and the latter is achieved by imposing unobservability conditions at the global level. Also, the communication graph model is subject to topology switching, triggered by local observers, allowing for the detection of stealthy attacks by the global observer. Theoretical conditions are derived for detectability of the stealthy attacks using the proposed detection framework. Finally, a numerical simulation is provided to validate the theoretical findings.
Russo, Alessio, Proutiere, Alexandre.  2021.  Minimizing Information Leakage of Abrupt Changes in Stochastic Systems. 2021 60th IEEE Conference on Decision and Control (CDC). :2750—2757.
This work investigates the problem of analyzing privacy of abrupt changes for general Markov processes. These processes may be affected by changes, or exogenous signals, that need to remain private. Privacy refers to the disclosure of information of these changes through observations of the underlying Markov chain. In contrast to previous work on privacy, we study the problem for an online sequence of data. We use theoretical tools from optimal detection theory to motivate a definition of online privacy based on the average amount of information per observation of the stochastic system in consideration. Two cases are considered: the full-information case, where the eavesdropper measures all but the signals that indicate a change, and the limited-information case, where the eavesdropper only measures the state of the Markov process. For both cases, we provide ways to derive privacy upper-bounds and compute policies that attain a higher privacy level. It turns out that the problem of computing privacy-aware policies is concave, and we conclude with some examples and numerical simulations for both cases.
Sun, Pengyu, Zhang, Hengwei, Ma, Junqiang, Li, Chenwei, Mi, Yan, Wang, Jindong.  2021.  A Selection Strategy for Network Security Defense Based on a Time Game Model. 2021 International Conference on Digital Society and Intelligent Systems (DSInS). :223—228.
Current network assessment models often ignore the impact of attack-defense timing on network security, making it difficult to characterize the dynamic game of attack-defense effectively. To effectively manage the network security risks and reduce potential losses, in this article, we propose a selection strategy for network defense based on a time game model. By analyzing the attack-defense status by analogy with the SIR infectious disease model, construction of an optimal defense strategy model based on time game, and calculation of the Nash equilibrium of the the attacker and the defender under different strategies, we can determine an optimal defense strategy. With the Matlab simulation, this strategy is verified to be effective.
2022-07-29
Mishchenko, Mikhail A., Bolshakov, Denis I., Matrosov, Valery V., Sysoev, Ilya V..  2021.  Electronic neuron-like generator with excitable and self-oscillating behavior. 2021 5th Scientific School Dynamics of Complex Networks and their Applications (DCNA). :1–2.
Experimental implementation of phase-locked loop (PLL) with bandpass filter is proposed. Such PLL is noteworthy for neuron-like dynamics. It generates both regular and chaotic spikes and bursts. Previously proposed hardware implementation of this system has significant disadvantage – absence of excitable (non-oscillating) mode that is vital for brain neurons. The proposed electronic neuron-like generator is modified and could be used for hardware implementation of spiking neural networks.
2022-06-30
Okumura, Mamoru, Tomoki, Kaga, Okamoto, Eiji, Yamamoto, Tetsuya.  2021.  Chaos-Based Interleave Division Multiple Access Scheme with Physical Layer Security. 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC). :1—2.

Interleave division multiple access (IDMA) is a multiple-access scheme and it is expected to improve frequency efficiency. Meanwhile, the damage caused by cyberattacks is increasing yearly. To solve this problem, we propose a method of applying radio-wave encryption to IDMA based on chaos modulation to realize physical layer security and the channel coding effect. We show that the proposed scheme ensures physical layer security and obtains channel coding gain by numerical simulations.

2022-03-22
Yong, Kenan, Chen, Mou, Wu, Qingxian.  2021.  Finite-Time Performance Recovery Strategy-based NCE Adaptive Neural Control for Networked Nonlinear Systems against DoS Attack. 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS). :403—410.
Networked control design is essential to enable normal operation and further accomplish performance improvement of the cyber-physical systems. In this work, a resilient control scheme is presented for the networked nonlinear system under the denial-of-service (DoS) attack and the system uncertainty. Through synthesizing a self regulation system, this scheme is capable of releasing the prescribed performance when attack is active and recovering that in finite-time after the attack is slept. Meanwhile, the neural network is employed to approximate the system uncertainty. Particularly, the update law possesses the non-certainty-equivalent (NCE) structure, and then the impact of the DoS attack is totally isolated. Finally, the numerical simulation is presented to illustrate the effectiveness and benefits of the estimation scheme and the control design.
2022-02-10
AIT ALI, Mohamed Elamine, AGOUZOUL, Mohamed, AANNAQUE, Abdeslam.  2020.  Analytical and numerical study of an oscillating liquid inside a U-tube used as wave energy converter. 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC). :1–5.
The objective of this work is to study, using an analytical approach and a numerical simulation, the dynamic behavior of an oscillating liquid inside a fixed U-tube with open ends used as wave energy converter. By establishing a detailed liquid's motion equation and developing a numerical simulation, based on volume of fluid formulation, we quantified the available power that could be extracted for our configuration. A parametrical study using the analytical model showed the effect of each significant parameter on first peak power and subsequent dampening of this peak power, which constitutes a tool for choosing optimal designs. The numerical simulation gave a more realistic model, the obtained results are in good agreements with those of the analytical approach that underestimates the dampening of oscillations. We focused after on influence of the numerical model formulation, mesh type and mesh size on simulation results: no noticeable effect was observed.
ISSN: 2644-1837
2021-11-29
Wen, Guanghui, Lv, Yuezu, Zhou, Jialing, Fu, Junjie.  2020.  Sufficient and Necessary Condition for Resilient Consensus under Time-Varying Topologies. 2020 7th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS). :84–89.
Although quite a few results on resilient consensus of multi-agent systems with malicious agents and fixed topology have been reported in the literature, we lack any known results on such a problem for multi-agent systems with time-varying topologies. Herein, we study the resilient consensus problem of time-varying networked systems in the presence of misbehaving nodes. A novel concept of joint ( r, s) -robustness is firstly proposed to characterize the robustness of the time-varying topologies. It is further revealed that the resilient consensus of multi-agent systems under F-total malicious network can be reached by the Weighted Mean-Subsequence-Reduced algorithm if and only if the time-varying graph is jointly ( F+1, F+1) -robust. Numerical simulations are finally performed to verify the effectiveness of the analytical results.
2021-05-05
Elvira, Clément, Herzet, Cédric.  2020.  Short and Squeezed: Accelerating the Computation of Antisparse Representations with Safe Squeezing. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :5615—5619.
Antisparse coding aims at spreading the information uniformly over representation coefficients and can be expressed as the solution of an ℓ∞-norm regularized problem. In this paper, we propose a new methodology, coined "safe squeezing", accelerating the computation of antisparse representations. The idea consists in identifying saturated entries of the solution via simple tests and compacting their contribution to achieve some form of dimensionality reduction. Numerical experiments show that the proposed approach leads to significant computational gain.
2020-09-28
Hale, Matthew, Jones, Austin, Leahy, Kevin.  2018.  Privacy in Feedback: The Differentially Private LQG. 2018 Annual American Control Conference (ACC). :3386–3391.
Information communicated within cyber-physical systems (CPSs) is often used in determining the physical states of such systems, and malicious adversaries may intercept these communications in order to infer future states of a CPS or its components. Accordingly, there arises a need to protect the state values of a system. Recently, the notion of differential privacy has been used to protect state trajectories in dynamical systems, and it is this notion of privacy that we use here to protect the state trajectories of CPSs. We incorporate a cloud computer to coordinate the agents comprising the CPSs of interest, and the cloud offers the ability to remotely coordinate many agents, rapidly perform computations, and broadcast the results, making it a natural fit for systems with many interacting agents or components. Striving for broad applicability, we solve infinite-horizon linear-quadratic-regulator (LQR) problems, and each agent protects its own state trajectory by adding noise to its states before they are sent to the cloud. The cloud then uses these state values to generate optimal inputs for the agents. As a result, private data are fed into feedback loops at each iteration, and each noisy term affects every future state of every agent. In this paper, we show that the differentially private LQR problem can be related to the well-studied linear-quadratic-Gaussian (LQG) problem, and we provide bounds on how agents' privacy requirements affect the cloud's ability to generate optimal feedback control values for the agents. These results are illustrated in numerical simulations.
2020-08-10
Wu, Zhengze, Zhang, Xiaohong, Zhong, Xiaoyong.  2019.  Generalized Chaos Synchronization Circuit Simulation and Asymmetric Image Encryption. IEEE Access. 7:37989–38008.
Generalized chaos systems have more complex dynamic behavior than conventional chaos systems. If a generalized response system can be synchronized with a conventional drive system, the flexible control parameters and unpredictable synchronization state will increase significantly. The study first constructs a four-dimensional nonlinear dynamic equation with quadratic variables as a drive system. The numerical simulation and analyses of the Lyapunov exponent show that it is also a chaotic system. Based on the generalized chaos synchronization (GCS) theory, a four-dimensional diffeomorphism function is designed, and the corresponding GCS response system is generated. Simultaneously, the structural and synchronous circuits of information interaction and control are constructed with Multisim™ software, with the circuit simulation resulting in a good agreement with the numerical calculations. In order to verify the practical effect of generalized synchronization, an RGB digital image secure communication scheme is proposed. We confuse a 24-bit true color image with the designed GCS system, extend the original image to 48-bits, analyze the scheme security from keyspace, key sensitivity and non-symmetric identity authentication, classical types of attacks, and statistical average from the histogram, image correlation. The research results show that this GCS system is simple and feasible, and the encryption algorithm is closely related to the confidential information, which can resist the differential attack. The scheme is suitable to be applied in network images or other multimedia safe communications.
2020-05-18
Zhou, Wei, Yang, Weidong, Wang, Yan, Zhang, Hong.  2018.  Generalized Reconstruction-Based Contribution for Multiple Faults Diagnosis with Bayesian Decision. 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS). :813–818.
In fault diagnosis of industrial process, there are usually more than one variable that are faulty. When multiple faults occur, the generalized reconstruction-based contribution can be helpful while traditional RBC may make mistakes. Due to the correlation between the variables, these faults usually propagate to other normal variables, which is called smearing effect. Thus, it is helpful to consider the pervious fault diagnosis results. In this paper, a data-driven fault diagnosis method which is based on generalized RBC and bayesian decision is presented. This method combines multi-dimensional RBC and bayesian decision. The proposed method improves the diagnosis capability of multiple and minor faults with greater noise. A numerical simulation example is given to show the effectiveness and superiority of the proposed method.
2020-01-13
Gou, Yue, Dai, Yu-yu.  2019.  Simulation Study on Wideband Transducer with Longitudinal-Flexural Coupling Vibration. 2019 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). :1–4.
This paper designed a longitudinal bending coupled piezoelectric transducer. The transducer is composed of a rear metal block, a longitudinally polarized piezoelectric ceramic piece and a slotted round front cover. The longitudinal vibration of the piezoelectric oscillators drive the front cover to generate bending vibration to widen the operating frequency band while reducing the fluctuation of transmission voltage response. In this paper, the design method of this multimode coupled transducer is given, and the method is verified by numerical simulation. The results show that the analytical theory and numerical simulation results have good consistency. This longitudinal-flexural coupled vibration transducer widens the bandwidth while preserving the emission voltage response.
2019-01-16
Kimmich, J. M., Schlesinger, A., Tschaikner, M., Ochmann, M., Frank, S..  2018.  Acoustical Analysis of Coupled Rooms Applied to the Deutsche Oper Berlin. 2018 Joint Conference - Acoustics. :1–9.
The aim of the project SIMOPERA is to simulate and optimize the acoustics in large and complex rooms, with special focus on the Deutsche Oper Berlin as an example of application. Firstly, characteristic subspaces of the opera are considered such as the orchestra pit, the stage and the auditorium. Special attention is paid to the orchestra pit, where high sound pressure levels can occur, leading to noise related risks for the musicians. However, lowering the sound pressure level in the orchestra pit should not violate other objectives as the propagation of sound into the auditorium, the balance between the stage performers and the orchestra across the hall, and the mutual audibility between performers and orchestra members. For that reason, a hybrid simulation method consisting of the wave-based Finite Element Method (FEM) and the Boundary Element Method (BEM) for low frequencies and geometrical methods like the mirror source method and ray tracing for higher frequencies is developed in order to determine the relevant room acoustic quantities such as impulse response functions, reverberation time, clarity, center time etc. Measurements in the opera will continuously accompany the numerical calculations. Finally, selected constructive means for reducing the sound level in the orchestra pit will be analyzed.
2018-02-21
Borah, M., Roy, B. K..  2017.  Hidden attractor dynamics of a novel non-equilibrium fractional-order chaotic system and its synchronisation control. 2017 Indian Control Conference (ICC). :450–455.

This paper presents a new fractional-order hidden strange attractor generated by a chaotic system without equilibria. The proposed non-equilibrium fractional-order chaotic system (FOCS) is asymmetric, dissimilar, topologically inequivalent to typical chaotic systems and challenges the conventional notion that the presence of unstable equilibria is mandatory to ensure the existence of chaos. The new fractional-order model displays rich bifurcation undergoing a period doubling route to chaos, where the fractional order α is the bifurcation parameter. Study of the hidden attractor dynamics is carried out with the aid of phase portraits, sensitivity to initial conditions, fractal Lyapunov dimension, maximum Lyapunov exponents spectrum and bifurcation analysis. The minimum commensurate dimension to display chaos is determined. With a view to utilizing it in chaos based cryptology and coding information, a synchronisation control scheme is designed. Finally the theoretical analyses are validated by numerical simulation results which are in good agreement with the former.

2017-12-27
Tutueva, A. V., Butusov, D. N., Pesterev, D. O., Belkin, D. A., Ryzhov, N. G..  2017.  Novel normalization technique for chaotic Pseudo-random number generators based on semi-implicit ODE solvers. 2017 International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT QM IS). :292–295.

The paper considers the general structure of Pseudo-random binary sequence generator based on the numerical solution of chaotic differential equations. The proposed generator architecture divides the generation process in two stages: numerical simulation of the chaotic system and converting the resulting sequence to a binary form. The new method of calculation of normalization factor is applied to the conversion of state variables values to the binary sequence. Numerical solution of chaotic ODEs is implemented using semi-implicit symmetric composition D-method. Experimental study considers Thomas and Rössler attractors as test chaotic systems. Properties verification for the output sequences of generators is carried out using correlation analysis methods and NIST statistical test suite. It is shown that output sequences of investigated generators have statistical and correlation characteristics that are specific for the random sequences. The obtained results can be used in cryptography applications as well as in secure communication systems design.

Gençoğlu, M. T..  2017.  Mathematical cryptanalysis of \#x201C;personalized information encryption using ECG signals with chaotic functions \#x201D;. 2017 International Conference on Computer Science and Engineering (UBMK). :878–881.

The chaotic system and cryptography have some common features. Due to the close relationship between chaotic system and cryptosystem, researchers try to combine the chaotic system with cryptosystem. In this study, security analysis of an encryption algorithm which aims to encrypt the data with ECG signals and chaotic functions was performed using the Logistic map in text encryption and Henon map in image encryption. In the proposed algorithm, text and image data can be encrypted at the same time. In addition, ECG signals are used to determine the initial conditions and control parameters of the chaotic functions used in the algorithm to personalize of the encryption algorithm. In this cryptanalysis study, the inadequacy of the mentioned process and the weaknesses of the proposed method have been determined. Encryption algorithm has not sufficient capacity to provide necessary security level of key space and secret key can be obtained with only one plaintext/ciphertext pair with chosen-plaintext attack.

2015-05-04
Van Vaerenbergh, S., González, O., Vía, J., Santamaría, I..  2014.  Physical layer authentication based on channel response tracking using Gaussian processes. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. :2410-2414.

Physical-layer authentication techniques exploit the unique properties of the wireless medium to enhance traditional higher-level authentication procedures. We propose to reduce the higher-level authentication overhead by using a state-of-the-art multi-target tracking technique based on Gaussian processes. The proposed technique has the additional advantage that it is capable of automatically learning the dynamics of the trusted user's channel response and the time-frequency fingerprint of intruders. Numerical simulations show very low intrusion rates, and an experimental validation using a wireless test bed with programmable radios demonstrates the technique's effectiveness.

2015-05-01
Van Vaerenbergh, S., González, O., Vía, J., Santamaría, I..  2014.  Physical layer authentication based on channel response tracking using Gaussian processes. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. :2410-2414.

Physical-layer authentication techniques exploit the unique properties of the wireless medium to enhance traditional higher-level authentication procedures. We propose to reduce the higher-level authentication overhead by using a state-of-the-art multi-target tracking technique based on Gaussian processes. The proposed technique has the additional advantage that it is capable of automatically learning the dynamics of the trusted user's channel response and the time-frequency fingerprint of intruders. Numerical simulations show very low intrusion rates, and an experimental validation using a wireless test bed with programmable radios demonstrates the technique's effectiveness.