Biblio
We consider distributed Kalman filter for dynamic state estimation over wireless sensor networks. It is promising but challenging when network is under cyber attacks. Since the information exchange between nodes, the malicious attacks quickly spread across the entire network, which causing large measurement errors and even to the collapse of sensor networks. Aiming at the malicious network attack, a trust-based distributed processing frame is proposed. Which allows neighbor nodes to exchange information, and a series of trusted nodes are found using truth discovery. As a demonstration, distributed Cooperative Localization is considered, and numerical results are provided to evaluate the performance of the proposed approach by considering random, false data injection and replay attacks.
Military communities have come to rely heavily on commercial off the shelf (COTS) standards and technologies for Internet of Things (IoT) operations. One of the major obstacles to military use of COTS IoT devices is the security of data transfer. In this paper, we successfully design and develop a lightweight, trust-based security architecture to support routing in a mobile IoT network. Specifically, we modify the RPL IoT routing algorithm using common security techniques, including a nonce identity value, timestamp, and network whitelist. Our approach allows RPL to select a routing path over a mobile IoT wireless network based on a computed node trust value and average received signal strength indicator (ARSSI) value across network members. We conducted simulations using the Cooja network simulator and Wireshark to validate the algorithm against stipulated threat models. We demonstrate that our algorithm can protect the network against Denial of Service (DoS) and Sybil based identity attacks. We also show that the control overhead required for our algorithm is less than 5% and that the packet delivery rate improves by nearly 10%.
Decision making in utilities, municipal, and energy companies depends on accurate and trustworthy weather information and predictions. Recently, crowdsourced personal weather stations (PWS) are being increasingly used to provide a higher spatial and temporal resolution of weather measurements. However, tools and methods to ensure the trustworthiness of the crowdsourced data in real-time are lacking. In this paper, we present a Reputation System for Crowdsourced Rainfall Networks (RSCRN) to assign trust scores to personal weather stations in a region. Using real PWS data from the Weather Underground service in the high flood risk region of Norfolk, Virginia, we evaluate the performance of the proposed RSCRN. The proposed method is able to converge to a confident trust score for a PWS within 10–20 observations after installation. Collectively, the results indicate that the trust score derived from the RSCRN can reflect the collective measure of trustworthiness to the PWS, ensuring both useful and trustworthy data for modeling and decision-making in the future.
Internet of things has become a subject of interest across a different industry domain. It includes 6LoWPAN (Low-Power Wireless Personal Area Network) which is used for a variety of application including home automation, sensor networks, manufacturing and industry application etc. However, gathering such a huge amount of data from such a different domain causes a problem of traffic congestion, high reliability, high energy efficiency etc. In order to address such problems, content based routing (CBR) technique is proposed, where routing paths are decided according to the type of content. By routing the correlated data to hop nodes for processing, a higher data aggregation ratio can be obtained, which in turns reducing the traffic congestion and minimizes the energy consumption. CBR is implemented on top of existing RPL (Routing Protocol for Low Power and Lossy network) and implemented in contiki operating system using cooja simulator. The analysis are carried out on the basis average power consumption, packet delivery ratio etc.
Electronic power grid is a distributed network used for transferring electricity and power from power plants to consumers. Based on sensor readings and control system signals, power grid states are measured and estimated. As a result, most conventional attacks, such as denial-of-service attacks and random attacks, could be found by using the Kalman filter. However, false data injection attacks are designed against state estimation models. Currently, distributed Kalman filtering is proved effective in sensor networks for detection and estimation problems. Since meters are distributed in smart power grids, distributed estimation models can be used. Thus in this paper, we propose a diffusion Kalman filter for the power grid to have a good performance in estimating models and to effectively detect false data injection attacks.
Parameter estimation in wireless sensor networks (WSN) using encrypted non-binary quantized data is studied. In a WSN, sensors transmit their observations to a fusion center through a wireless medium where the observations are susceptible to unauthorized eavesdropping. Encryption approaches for WSNs with fixed threshold binary quantization were previously explored. However, fixed threshold binary quantization limits parameter estimation to scalar parameters. In this paper, we propose a stochastic encryption approach for WSNs that can operate on non-binary quantized observations and has the capability for vector parameter estimation. We extend a binary stochastic encryption approach proposed previously, to a non-binary generalized case. Sensor outputs are quantized using a quantizer with R + 1 levels, where R $ε$ 1, 2, 3,..., encrypted by flipping them with certain flipping probabilities, and then transmitted. Optimal estimators using maximum-likelihood estimation are derived for both a legitimate fusion center (LFC) and a third party fusion center (TPFC) perspectives. We assume the TPFC is unaware of the encryption. Asymptotic analysis of the estimators is performed by deriving the Cramer-Rao lower bound for LFC estimation, and the asymptotic bias and variance for TPFC estimation. Numerical results validating the asymptotic analysis are presented.
Tactical wireless sensor networks (WSNs) are deployed over a region of interest for mission centric operations. The sink node in a tactical WSN is the aggregation point of data processing. Due to its essential role in the network, the sink node is a high priority target for an attacker who wishes to disable a tactical WSN. This paper focuses on the mitigation of sink-node vulnerability in a tactical WSN. Specifically, we study the issue of protecting the sink node through a technique known as k-anonymity. To achieve k-anonymity, we use a specific routing protocol designed to work within the constraints of WSN communication protocols, specifically IEEE 802.15.4. We use and modify the Lightweight Ad hoc On-Demand Next Generation (LOADng) reactive-routing protocol to achieve anonymity. This modified LOADng protocol prevents an attacker from identifying the sink node without adding significant complexity to the regular sensor nodes. We simulate the modified LOADng protocol using a custom-designed simulator in MATLAB. We demonstrate the effectiveness of our protocol and also show some of the performance tradeoffs that come with this method.
Nowadays wireless networks are fast, becoming more secure than their wired counterparts. Recent technological advances in wireless networking, IC fabrication and sensor technology have lead to the emergence of millimetre scale devices that collectively form a Wireless Sensor Network (WSN) and are radically changing the way in which we sense, process and transport signals of interest. They are increasingly become viable solutions to many challenging problems and will successively be deployed in many areas in the future such as in environmental monitoring, business, and military applications. However, deploying new technology, without security in mind has often proved to be unreasonably dangerous. This also applies to WSNs, especially those used in applications that monitor sensitive information (e.g., health care applications). There have been significant contributions to overcome many weaknesses in sensor networks like coverage problems, lack in power and making best use of limited network bandwidth, however; work in sensor network security is still in its infancy stage. Security in WSNs presents several well-known challenges stemming from all kinds of resource constraints of individual sensors. The problem of securing these networks emerges more and more as a hot topic. Symmetric key cryptography is commonly seen as infeasible and public key cryptography has its own key distribution problem. In contrast to this prejudice, this paper presents a new symmetric encryption standard algorithm which is an extension of the previous work of the authors i.e. UES version-II and III. Roy et al recently developed few efficient encryption methods such as UES version-I, Modified UES-I, UES version-II, UES version-III. The algorithm is named as Ultra Encryption Standard version — IV algorithm. It is a Symmetric key Cryptosystem which includes multiple encryption, bit-wise reshuffling method and bit-wise columnar transposition method. In the present - ork the authors have performed the encryption process at the bit-level to achieve greater strength of encryption. The proposed method i.e. UES-IV can be used to encrypt short message, password or any confidential key.
The Information-Centric Networking (ICN) paradigm is drastically different from traditional host-centric IP networking. As a consequence of the disparity between the two, the security models are also very different. The security model for IP is based on securing the end-to-end communication link between the communicating nodes whereas the ICN security model is based on securing data objects often termed as Object Security. Just like the traditional security model, Object security also poses a challenge of key management. This is especially concerning for ICN as data cached in its encrypted form should be usable by several different users. Attribute-Based Encryption (ABE) alleviates this problem by enabling data to be encrypted under a policy that suits several different types of users. Users with different sets of attributes can potentially decrypt the data hence eliminating the need to encrypt the data separately for each type of user. ABE is a more processing intensive task compared to traditional public key encryption methods hence posing a challenge for resource constrained environments with devices that have low memory and battery power. In this demo we show ABE encryption carried out on a resource constrained sensor platform. Encrypted data is transported over an ICN network and is decrypted only by clients that have the correct set of attributes.
In order to be resilient to attacks, a cyber-physical system (CPS) must be able to detect attacks before they can cause significant damage. To achieve this, \emph{intrusion detection systems} (IDS) may be deployed, which can detect attacks and alert human operators, who can then intervene. However, the resource-constrained nature of many CPS poses a challenge, since reliable IDS can be computationally expensive. Consequently, computational nodes may not be able to perform intrusion detection continuously, which means that we have to devise a schedule for performing intrusion detection. While a uniformly random schedule may be optimal in a purely cyber system, an optimal schedule for protecting CPS must also take into account the physical properties of the system, since the set of adversarial actions and their consequences depend on the physical systems. Here, in the context of water distribution networks, we study IDS scheduling problems in two settings and under the constraints on the available battery supplies. In the first problem, the objective is to design, for a given duration of time $T$, scheduling schemes for IDS so that the probability of detecting an attack is maximized within that duration. We propose efficient heuristic algorithms for this general problem and evaluate them on various networks. In the second problem, our objective is to design scheduling schemes for IDS so that the overall lifetime of the network is maximized while ensuring that an intruder attack is always detected. Various strategies to deal with this problem are presented and evaluated for various networks.