Biblio
Filters: Keyword is insider threat [Clear All Filters]
Compliance Checking Based Detection of Insider Threat in Industrial Control System of Power Utilities. 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). :1142—1147.
.
2022. Compare to outside threats, insider threats that originate within targeted systems are more destructive and invisible. More importantly, it is more difficult to detect and mitigate these insider threats, which poses significant cyber security challenges to an industry control system (ICS) tightly coupled with today’s information technology infrastructure. Currently, power utilities rely mainly on the authentication mechanism to prevent insider threats. If an internal intruder breaks the protection barrier, it is hard to identify and intervene in time to prevent harmful damage. Based on the existing in-depth security defense system, this paper proposes an insider threat protection scheme for ICSs of power utilities. This protection scheme can conduct compliance check by taking advantage of the characteristics of its business process compliance and the nesting of upstream and downstream business processes. Taking the Advanced Metering Infrastructures (AMIs) in power utilities as an example, the potential insider threats of violation and misoperation under the current management mechanism are identified after the analysis of remote charge control operation. According to the business process, a scheme of compliance check for remote charge control command is presented. Finally, the analysis results of a specific example demonstrate that the proposed scheme can effectively prevent the consumers’ power outage due to insider threats.
An Insider Threat Detection Method Based on Heterogeneous Graph Embedding. 2022 IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :11—16.
.
2022. Insider threats have high risk and concealment characteristics, which makes traditional anomaly detection methods less effective in insider threat detection. Existing detection methods ignore the logical relationship between user behaviors and the consistency of behavior sequences among homogeneous users, resulting in poor model effects. We propose an insider threat detection method based on internal user heterogeneous graph embedding. Firstly, according to the characteristics of CERT data, comprehensively consider the relationship between users, the time sequence, and logical relationship, and construct a heterogeneous graph. In the second step, according to the characteristics of heterogeneous graphs, the embedding learning of graph nodes is carried out according to random walk and Word2vec. Finally, we propose an Insider Threat Detection Design (ITDD) model which can map and the user behavior sequence information into a high-dimensional feature space. In the CERT r5.2 dataset, compared with a variety of traditional machine learning methods, the effect of our method is significantly better than the final result.
Insider Attack Detection and Prevention using Server Authentication using Elgamal Encryption. 2022 International Conference on Inventive Computation Technologies (ICICT). :967—972.
.
2022. Web services are growing demand with fundamental advancements and have given more space to researchers for improving security of all real world applications. Accessing and get authenticated in many applications on web services, user discloses their password and other privacy data to the server for authentication purposes. These shared information should be maintained by the server with high security, otherwise it can be used for illegal purposes for any authentication breach. Protecting the applications from various attacks is more important. Comparing the security threats, insider attacks are most challenging to identify due to the fact that they use the authentication of legitimate users and their privileges to access the application and may cause serious threat to the application. Insider attacks has been studied in previous researchers with different security measures, however there is no much strong work proposed. Various security protocols were proposed for defending insider attackers. The proposed work focused on insider attack protection through Elgamal cryptography technique. The proposed work is much effective on insider attacks and also defends against various attacks. The proposed protocol is better than existing works. The key computation cost and communication cost is relatively low in this proposed work. The proposed work authenticates the application by parallel process of two way authentication mechanism through Elgamal algorithm.
An Analysis of Insider Attack Detection Using Machine Learning Algorithms. 2022 IEEE 2nd International Conference on Mobile Networks and Wireless Communications (ICMNWC). :1—7.
.
2022. Among the greatest obstacles in cybersecurity is insider threat, which is a well-known massive issue. This anomaly shows that the vulnerability calls for specialized detection techniques, and resources that can help with the accurate and quick detection of an insider who is harmful. Numerous studies on identifying insider threats and related topics were also conducted to tackle this problem are proposed. Various researches sought to improve the conceptual perception of insider risks. Furthermore, there are numerous drawbacks, including a dearth of actual cases, unfairness in drawing decisions, a lack of self-optimization in learning, which would be a huge concern and is still vague, and the absence of an investigation that focuses on the conceptual, technological, and numerical facets concerning insider threats and identifying insider threats from a wide range of perspectives. The intention of the paper is to afford a thorough exploration of the categories, levels, and methodologies of modern insiders based on machine learning techniques. Further, the approach and evaluation metrics for predictive models based on machine learning are discussed. The paper concludes by outlining the difficulties encountered and offering some suggestions for efficient threat identification using machine learning.
A Framework to Detect the Malicious Insider Threat in Cloud Environment using Supervised Learning Methods. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :354—358.
.
2022. A malicious insider threat is more vulnerable to an organization. It is necessary to detect the malicious insider because of its huge impact to an organization. The occurrence of a malicious insider threat is less but quite destructive. So, the major focus of this paper is to detect the malicious insider threat in an organization. The traditional insider threat detection algorithm is not suitable for real time insider threat detection. A supervised learning-based anomaly detection technique is used to classify, predict and detect the malicious and non-malicious activity based on highest level of anomaly score. In this paper, a framework is proposed to detect the malicious insider threat using supervised learning-based anomaly detection. It is used to detect the malicious insider threat activity using One-Class Support Vector Machine (OCSVM). The experimental results shows that the proposed framework using OCSVM performs well and detects the malicious insider who obtain huge anomaly score than a normal user.
Insider Threat Data Expansion Research using Hyperledger Fabric. 2022 International Conference on Platform Technology and Service (PlatCon). :25—28.
.
2022. This paper deals with how to implement a system that extends insider threat behavior data using private blockchain technology to overcome the limitations of insider threat datasets. Currently, insider threat data is completely undetectable in existing datasets for new methods of insider threat due to the lack of insider threat scenarios and abstracted event behavior. Also, depending on the size of the company, it was difficult to secure a sample of data with the limit of a small number of leaks among many general users in other organizations. In this study, we consider insiders who pose a threat to all businesses as public enemies. In addition, we proposed a system that can use a private blockchain to expand insider threat behavior data between network participants in real-time to ensure reliability and transparency.
Towards a New Taxonomy of Insider Threats. 2022 IST-Africa Conference (IST-Africa). :1—10.
.
2022. This paper discusses the outcome of combining insider threat agent taxonomies with the aim of enhancing insider threat detection. The objectives sought to explore taxonomy combinations and investigate threat sophistication from the taxonomy combinations. Investigations revealed the plausibility of combining the various taxonomy categories to derive a new taxonomy. An observation on category combinations yielded the introduction of the concept of a threat path. The proposed taxonomy tree consisted of more than a million threat-paths obtained using a formula from combinatorics analysis. The taxonomy category combinations thus increase the insider threat landscape and hence the gap between insider threat agent sophistication and countermeasures. On the defensive side, knowledge of insider threat agent taxonomy category combinations has the potential to enhance defensive countermeasure tactics, techniques and procedures, thus increasing the chances of insider threat detection.
An Exploratory Study of Security Data Analysis Method for Insider Threat Prevention. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :611—613.
.
2022. Insider threats are steadily increasing, and the damage is also enormous. To prevent insider threats, security solutions, such as DLP, SIEM, etc., are being steadily developed. However, they have limitations due to the high rate of false positives. In this paper, we propose a data analysis method and methodology for responding to a technology leak incident. The future study may be performed based on the proposed methodology.
Developing Visualisations to Enhance an Insider Threat Product: A Case Study. 2021 IEEE Symposium on Visualization for Cyber Security (VizSec). :47–57.
.
2021. This paper describes the process of developing data visualisations to enhance a commercial software platform for combating insider threat, whose existing UI, while perfectly functional, was limited in its ability to allow analysts to easily spot the patterns and outliers that visualisation naturally reveals. We describe the design and development process, proceeding from initial tasks/requirements gathering, understanding the platform’s data formats, the rationale behind the visualisations’ design, and then refining the prototype through gathering feedback from representative domain experts who are also current users of the software. Through a number of example scenarios, we show that the visualisation can support the identified tasks and aid analysts in discovering and understanding potentially risky insider activity within a large user base.
Insider Attack: Internal Cyber Attack Detection Using Machine Learning. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1–7.
.
2021. A Cyber Attack is a sudden attempt launched by cybercriminals against multiple computers or networks. According to evolution of cyber space, insider attack is the most serious attack faced by end users, all over the world. Cyber Security reports shows that both US federal Agency as well as different organizations faces insider threat. Machine learning (ML) provide an important technology to secure data from insider threats. Random Forest is the best algorithm that focus on user's action, services and ability for insider attack detection based on data granularity. Substantial raise in the count of decision tree, increases the time consumption and complexity of Random Forest. A novel algorithm Known as Random Forest With Randomized Weighted Fuzzy Feature Set (RF-RWFF) is developed. Fuzzy Membership Function is used for feature aggregation and Randomized Weighted Majority Algorithm (RWMA) is used in the prediction part of Random Forest (RF) algorithm to perform voting. RWMA transform conventional Random Forest, to a perceptron like algorithm and increases the miliage. The experimental results obtained illustrate that the proposed model exhibits an overall improvement in accuracy and recall rate with very much decrease in time complexity compared to conventional Random Forest algorithm. This algorithm can be used in organization and government sector to detect insider fastly and accurately.
Insider Threat Detection Based on User Historical Behavior and Attention Mechanism. 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). :564–569.
.
2021. Insider threat makes enterprises or organizations suffer from the loss of property and the negative influence of reputation. User behavior analysis is the mainstream method of insider threat detection, but due to the lack of fine-grained detection and the inability to effectively capture the behavior patterns of individual users, the accuracy and precision of detection are insufficient. To solve this problem, this paper designs an insider threat detection method based on user historical behavior and attention mechanism, including using Long Short Term Memory (LSTM) to extract user behavior sequence information, using Attention-based on user history behavior (ABUHB) learns the differences between different user behaviors, uses Bidirectional-LSTM (Bi-LSTM) to learn the evolution of different user behavior patterns, and finally realizes fine-grained user abnormal behavior detection. To evaluate the effectiveness of this method, experiments are conducted on the CMU-CERT Insider Threat Dataset. The experimental results show that the effectiveness of this method is 3.1% to 6.3% higher than that of other comparative model methods, and it can detect insider threats in different user behaviors with fine granularity.
Insider Threat Detection using Deep Autoencoder and Variational Autoencoder Neural Networks. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :129–134.
.
2021. Internal attacks are one of the biggest cybersecurity issues to companies and businesses. Despite the implemented perimeter security systems, the risk of adversely affecting the security and privacy of the organization’s information remains very high. Actually, the detection of such a threat is known to be a very complicated problem, presenting many challenges to the research community. In this paper, we investigate the effectiveness and usefulness of using Autoencoder and Variational Autoencoder deep learning algorithms to automatically defend against insider threats, without human intervention. The performance evaluation of the proposed models is done on the public CERT dataset (CERT r4.2) that contains both benign and malicious activities generated from 1000 simulated users. The comparison results with other models show that the Variational Autoencoder neural network provides the best overall performance with a higher detection accuracy and a reasonable false positive rate.
DeepMIT: A Novel Malicious Insider Threat Detection Framework based on Recurrent Neural Network. 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD). :335–341.
.
2021. Currently, more and more malicious insiders are making threats, and the detection of insider threats is becoming more challenging. The malicious insider often uses legitimate access privileges and mimic normal behaviors to evade detection, which is difficult to be detected via using traditional defensive solutions. In this paper, we propose DeepMIT, a malicious insider threat detection framework, which utilizes Recurrent Neural Network (RNN) to model user behaviors as time sequences and predict the probabilities of anomalies. This framework allows DeepMIT to continue learning, and the detections are made in real time, that is, the anomaly alerts are output as rapidly as data input. Also, our framework conducts further insight of the anomaly scores and provides the contributions to the scores and, thus, significantly helps the operators to understand anomaly scores and take further steps quickly(e.g. Block insider's activity). In addition, DeepMIT utilizes user-attributes (e.g. the personality of the user, the role of the user) as categorical features to identify the user's truly typical behavior, which help detect malicious insiders who mimic normal behaviors. Extensive experimental evaluations over a public insider threat dataset CERT (version 6.2) have demonstrated that DeepMIT has outperformed other existing malicious insider threat solutions.
Anomaly Detection for Scenario-based Insider Activities using CGAN Augmented Data. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :718–725.
.
2021. Insider threats are the cyber attacks from the trusted entities within an organization. An insider attack is hard to detect as it may not leave a footprint and potentially cause huge damage to organizations. Anomaly detection is the most common approach for insider threat detection. Lack of real-world data and the skewed class distribution in the datasets makes insider threat analysis an understudied research area. In this paper, we propose a Conditional Generative Adversarial Network (CGAN) to enrich under-represented minority class samples to provide meaningful and diverse data for anomaly detection from the original malicious scenarios. Comprehensive experiments performed on benchmark dataset demonstrates the effectiveness of using CGAN augmented data, and the capability of multi-class anomaly detection for insider activity analysis. Moreover, the method is compared with other existing methods against different parameters and performance metrics.
Insider Threat Detection Using An Unsupervised Learning Method: COPOD. 2021 International Conference on Communications, Information System and Computer Engineering (CISCE). :749–754.
.
2021. In recent years, insider threat incidents and losses of companies or organizations are on the rise, and internal network security is facing great challenges. Traditional intrusion detection methods cannot identify malicious behaviors of insiders. As an effective method, insider threat detection technology has been widely concerned and studied. In this paper, we use the tree structure method to analyze user behavior, form feature sequences, and combine the Copula Based Outlier Detection (COPOD) method to detect the difference between feature sequences and identify abnormal users. We experimented on the insider threat dataset CERT-IT and compared it with common methods such as Isolation Forest.
GRU and Multi-autoencoder based Insider Threat Detection for Cyber Security. 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). :203–210.
.
2021. The concealment and confusion nature of insider threat makes it a challenging task for security analysts to identify insider threat from log data. To detect insider threat, we propose a novel gated recurrent unit (GRU) and multi-autoencoder based insider threat detection method, which is an unsupervised anomaly detection method. It takes advantage of the extremely unbalanced characteristic of insider threat data and constructs a normal behavior autoencoder with low reconfiguration error through multi-level filter behavior learning, and identifies the behavior data with high reconfiguration error as abnormal behavior. In order to achieve the high efficiency of calculation and detection, GRU and multi-head attention are introduced into the autoencoder. Use dataset v6.2 of the CERT insider threat as validation data and threat detection recall as evaluation metric. The experimental results show that the effect of the proposed method is obviously better than that of Isolation Forest, LSTM autoencoder and multi-channel autoencoders based insider threat detection methods, and it's an effective insider threat detection technology.
A Taxonomy of Insider Threat in Isolated (Air-Gapped) Computer Networks. 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST). :678–685.
.
2021. Mitigation of dangers posed by authorized and trusted insiders to the organization is a challenging Cyber Security issue. Despite state-of-the-art cyber security practices, malicious insiders present serious threat for the enterprises due to their wider access to organizational resources (Physical, Cyber) and good knowledge of internal processes with potential vulnerabilities. The issue becomes particularly important for isolated (air-gapped) computer networks, normally used by security sensitive organizations such as government, research and development, critical infrastructure (e.g. power, nuclear), finance, and military. Such facilities are difficult to compromise from outside; however, are quite much prone to insider threats. Although many insider threat taxonomies exist for generic computer networks; yet, the existing taxonomies do not effectively address the issue of Insider Threat in isolated computer networks. Thereby, we have developed an insider threat taxonomy specific to isolated computer networks focusing on actions performed by the trusted individual(s), Our methodology is to identify limitations in existing taxonomies and map real world insider threat cases on proposed taxonomy. We argue that for successful attack in an isolated computer network, the attack must manifest in both Physical and Cyber world. The proposed taxonomy systematically classifies different aspects of the problem into separate dimensions and branches out these dimensions into further sub-categories without loss of general applicability. Our multi-dimensional hierarchical taxonomy provides comprehensive treatment of the insider threat problem in isolated computer networks; thus, improving situational awareness of the security analyst and helps in determining proper countermeasures against perceived threats. Although many insider threat taxonomies exist for generic computer networks; yet, the existing taxonomies do not effectively address the issue of Insider Threat in isolated computer networks. Thereby, we have developed an insider threat taxonomy specific to isolated computer networks focusing on actions performed by the trusted individual(s), Our methodology is to identify limitations in existing taxonomies and map real world insider threat cases on proposed taxonomy. We argue that for successful attack in an isolated computer network, the attack must manifest in both Physical and Cyber world. The proposed taxonomy systematically classifies different aspects of the problem into separate dimensions and branches out these dimensions into further sub-categories without loss of general applicability. Our multi-dimensional hierarchical taxonomy provides comprehensive treatment of the insider threat problem in isolated computer networks; thus, improving situational awareness of the security analyst and helps in determining proper countermeasures against perceived threats. The proposed taxonomy systematically classifies different aspects of the problem into separate dimensions and branches out these dimensions into further sub-categories without loss of general applicability. Our multi-dimensional hierarchical taxonomy provides comprehensive treatment of the insider threat problem in isolated computer networks; thus, improving situational awareness of the security analyst and helps in determining proper countermeasures against perceived threats.
DANTE: Predicting Insider Threat using LSTM on system logs. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1151–1156.
.
2020. Insider threat is one of the most pernicious threat vectors to information and communication technologies (ICT) across the world due to the elevated level of trust and access that an insider is afforded. This type of threat can stem from both malicious users with a motive as well as negligent users who inadvertently reveal details about trade secrets, company information, or even access information to malignant players. In this paper, we propose a novel approach that uses system logs to detect insider behavior using a special recurrent neural network (RNN) model. Ground truth is established using DANTE and used as baseline for identifying anomalous behavior. For this, system logs are modeled as a natural language sequence and patterns are extracted from these sequences. We create workflows of sequences of actions that follow a natural language logic and control flow. These flows are assigned various categories of behaviors - malignant or benign. Any deviation from these sequences indicates the presence of a threat. We further classify threats into one of the five categories provided in the CERT insider threat dataset. Through experimental evaluation, we show that the proposed model can achieve 93% prediction accuracy.
Detecting Blockchain Security Threats. 2020 IEEE International Conference on Blockchain (Blockchain). :313—320.
.
2020. In many organizations, permissioned blockchain networks are currently transitioning from a proof-of-concept stage to production use. A crucial part of this transition is ensuring awareness of potential threats to network operations. Due to the plethora of software components involved in distributed ledgers, threats may be difficult or impossible to detect without a structured monitoring approach. To this end, we conduct a survey of attacks on permissioned blockchains and develop a set of threat indicators. To gather these indicators, a data processing pipeline is proposed to aggregate log information from relevant blockchain components, enriched with data from external sources. To evaluate the feasibility of monitoring current blockchain frameworks, we determine relevant data sources in Hyperledger Fabric. Our results show that the required data is mostly available, but also highlight significant improvement potential with regard to threat intelligence, chaincode scanners and built-in metrics.
Tackling Insider Threat in Cloud Relational Databases. 2012 IEEE Fifth International Conference on Utility and Cloud Computing. :215—218.
.
2012. Cloud security is one of the major issues that worry individuals and organizations about cloud computing. Therefore, defending cloud systems against attacks such asinsiders' attacks has become a key demand. This paper investigates insider threat in cloud relational database systems(cloud RDMS). It discusses some vulnerabilities in cloud computing structures that may enable insiders to launch attacks, and shows how load balancing across multiple availability zones may facilitate insider threat. To prevent such a threat, the paper suggests three models, which are Peer-to-Peer model, Centralized model and Mobile-Knowledgebase model, and addresses the conditions under which they work well.
Insider Threat Detection using an Artificial Immune system Algorithm. 2018 9th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :297—302.
.
2018. Insider threats result from legitimate users abusing their privileges, causing tremendous damage or losses. Malicious insiders can be the main threats to an organization. This paper presents an anomaly detection system for detecting insider threat activities in an organization using an ensemble that consists of negative selection algorithms (NSA). The proposed system classifies a selected user activity into either of two classes: "normal" or "malicious." The effectiveness of our proposed detection system is evaluated using case studies from the computer emergency response team (CERT) synthetic insider threat dataset. Our results show that the proposed method is very effective in detecting insider threats.
Insider Threat Identification System Model Based on Rough Set Dimensionality Reduction. 2010 Second World Congress on Software Engineering. 2:111—114.
.
2010. Insider threat makes great damage to the security of information system, traditional security methods are extremely difficult to work. Insider attack identification plays an important role in insider threat detection. Monitoring user's abnormal behavior is an effective method to detect impersonation, this method is applied to insider threat identification, to built user's behavior attribute information database based on weights changeable feedback tree augmented Bayes network, but data is massive, using the dimensionality reduction based on rough set, to establish the process information model of user's behavior attribute. Using the minimum risk Bayes decision can effectively identify the real identity of the user when user's behavior departs from the characteristic model.
A Mobile Edge Mitigation Model for Insider Threats: A Knowledgebase Approach. 2019 International Arab Conference on Information Technology (ACIT). :188—192.
.
2019. Taking care of security at the cloud is a major issue that needs to be carefully considered and solved for both individuals as well as organizations. Organizations usually expect more trust from employees as well as customers in one hand. On the other hand, cloud users expect their private data is maintained and secured. Although this must be case, however, some malicious outsiders of the cloud as well as malicious insiders who are cloud internal users tend to disclose private data for their malicious uses. Although outsiders of the cloud should be a concern, however, the more serious problems come from Insiders whose malicious actions are more serious and sever. Hence, insiders' threats in the cloud should be the top most problem that needs to be tackled and resolved. This paper aims to find a proper solution for the insider threat problem in the cloud. The paper presents a Mobile Edge Computing (MEC) mitigation model as a solution that suits the specialized nature of this problem where the solution needs to be very close to the place where insiders reside. This in fact gives real-time responses to attack, and hence, reduces the overhead in the cloud.
Modeling of Insider Threat using Enterprise Automaton. 2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT). :1—4.
.
2018. Substantial portions of attacks on the security of enterprises are perpetrated by Insiders having authorized privileges. Thus insider threat and attack detection is an important aspect of Security management. In the published literature, efforts are on to model the insider threats based on the behavioral traits of employees. The psycho-social behaviors are hard to encode in the software systems. Also, in some cases, there are privacy issues involved. In this paper, the human and non-human agents in a system are described in a novel unified model. The enterprise is described as an automaton and its states are classified secure, safe, unsafe and compromised. The insider agents and threats are modeled on the basis of the automaton and the model is validated using a case study.
An Active Defense Model and Framework of Insider Threats Detection and Sense. 2009 Fifth International Conference on Information Assurance and Security. 1:258—261.
.
2009. Insider attacks is a well-known problem acknowledged as a threat as early as 1980s. The threat is attributed to legitimate users who take advantage of familiarity with the computational environment and abuse their privileges, can easily cause significant damage or losses. In this paper, we present an active defense model and framework of insider threat detection and sense. Firstly, we describe the hierarchical framework which deal with insider threat from several aspects, and subsequently, show a hierarchy-mapping based insider threats model, the kernel of the threats detection, sense and prediction. The experiments show that the model and framework could sense the insider threat in real-time effectively.