Visible to the public Biblio

Filters: Keyword is insider threat  [Clear All Filters]
2021-04-08
Spooner, D., Silowash, G., Costa, D., Albrethsen, M..  2018.  Navigating the Insider Threat Tool Landscape: Low Cost Technical Solutions to Jump Start an Insider Threat Program. 2018 IEEE Security and Privacy Workshops (SPW). :247—257.
This paper explores low cost technical solutions that can help organizations prevent, detect, and respond to insider incidents. Features and functionality associated with insider risk mitigation are presented. A taxonomy for high-level categories of insider threat tools is presented. A discussion of the relationship between the types of tools points out the nuances of insider threat control deployment, and considerations for selecting, implementing, and operating insider threat tools are provided.
Mundie, D. A., Perl, S., Huth, C. L..  2013.  Toward an Ontology for Insider Threat Research: Varieties of Insider Threat Definitions. 2013 Third Workshop on Socio-Technical Aspects in Security and Trust. :26—36.
The lack of standardization of the terms insider and insider threat has been a noted problem for researchers in the insider threat field. This paper describes the investigation of 42 different definitions of the terms insider and insider threat, with the goal of better understanding the current conceptual model of insider threat and facilitating communication in the research community.
Sarma, M. S., Srinivas, Y., Abhiram, M., Ullala, L., Prasanthi, M. S., Rao, J. R..  2017.  Insider Threat Detection with Face Recognition and KNN User Classification. 2017 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM). :39—44.
Information Security in cloud storage is a key trepidation with regards to Degree of Trust and Cloud Penetration. Cloud user community needs to ascertain performance and security via QoS. Numerous models have been proposed [2] [3] [6][7] to deal with security concerns. Detection and prevention of insider threats are concerns that also need to be tackled. Since the attacker is aware of sensitive information, threats due to cloud insider is a grave concern. In this paper, we have proposed an authentication mechanism, which performs authentication based on verifying facial features of the cloud user, in addition to username and password, thereby acting as two factor authentication. New QoS has been proposed which is capable of monitoring and detection of insider threats using Machine Learning Techniques. KNN Classification Algorithm has been used to classify users into legitimate, possibly legitimate, possibly not legitimate and not legitimate groups to verify image authenticity to conclude, whether there is any possible insider threat. A threat detection model has also been proposed for insider threats, which utilizes Facial recognition and Monitoring models. Security Method put forth in [6] [7] is honed to include threat detection QoS to earn higher degree of trust from cloud user community. As a recommendation, Threat detection module should be harnessed in private cloud deployments like Defense and Pharma applications. Experimentation has been conducted using open source Machine Learning libraries and results have been attached in this paper.
Claycomb, W. R., Huth, C. L., Phillips, B., Flynn, L., McIntire, D..  2013.  Identifying indicators of insider threats: Insider IT sabotage. 2013 47th International Carnahan Conference on Security Technology (ICCST). :1—5.
This paper describes results of a study seeking to identify observable events related to insider sabotage. We collected information from actual insider threat cases, created chronological timelines of the incidents, identified key points in each timeline such as when attack planning began, measured the time between key events, and looked for specific observable events or patterns that insiders held in common that may indicate insider sabotage is imminent or likely. Such indicators could be used by security experts to potentially identify malicious activity at or before the time of attack. Our process included critical steps such as identifying the point of damage to the organization as well as any malicious events prior to zero hour that enabled the attack but did not immediately cause harm. We found that nearly 71% of the cases we studied had either no observable malicious action prior to attack, or had one that occurred less than one day prior to attack. Most of the events observed prior to attack were behavioral, not technical, especially those occurring earlier in the case timelines. Of the observed technical events prior to attack, nearly one third involved installation of software onto the victim organizations IT systems.
2020-08-07
Safar, Jamie L., Tummala, Murali, McEachen, John C., Bollmann, Chad.  2019.  Modeling Worm Propagation and Insider Threat in Air-Gapped Network using Modified SEIQV Model. 2019 13th International Conference on Signal Processing and Communication Systems (ICSPCS). :1—6.
Computer worms pose a major threat to computer and communication networks due to the rapid speed at which they propagate. Biologically based epidemic models have been widely used to analyze the propagation of worms in computer networks. For an air-gapped network with an insider threat, we propose a modified Susceptible-Exposed-Infected-Quarantined-Vaccinated (SEIQV) model called the Susceptible-Exposed-Infected-Quarantined-Patched (SEIQP) model. We describe the assumptions that apply to this model, define a set of differential equations that characterize the system dynamics, and solve for the basic reproduction number. We then simulate and analyze the parameters controlled by the insider threat to determine where resources should be allocated to attain different objectives and results.
2020-07-03
KAO, Da-Yu.  2019.  Cybercrime Countermeasure of Insider Threat Investigation. 2019 21st International Conference on Advanced Communication Technology (ICACT). :413—418.

The threat of cybercrime is becoming increasingly complex and diverse on putting citizen's data or money in danger. Cybercrime threats are often originating from trusted, malicious, or negligent insiders, who have excessive access privileges to sensitive data. The analysis of cybercrime insider investigation presents many opportunities for actionable intelligence on improving the quality and value of digital evidence. There are several advantages of applying Deep Packet Inspection (DPI) methods in cybercrime insider investigation. This paper introduces DPI method that can help investigators in developing new techniques and performing digital investigation process in forensically sound and timely fashion manner. This paper provides a survey of the packet inspection, which can be applied to cybercrime insider investigation.

2020-01-21
Greitzer, Frank L..  2019.  Insider Threats: It's the HUMAN, Stupid!. Proceedings of the Northwest Cybersecurity Symposium. :1–8.

Insider threats refer to threats posed by individuals who intentionally or unintentionally destroy, exfiltrate, or leak sensitive information, or expose their organization to outside attacks. Surveys of organizations in government and industry consistently show that threats posed by insiders rival those posed by hackers, and that insider attacks are even more costly. Emerging U.S. government guidelines and policies for establishing insider threat programs tend to specify only minimum standards for insider threat monitoring, analysis, and mitigation programs. Arguably, one of the most serious challenges is to identify and integrate behavioral (sociotechnical) indicators of insider threat r isk in addition to cyber/technical indicators. That is, in focusing on data that are most readily obtained, insider threat programs most often miss the human side of the problem. This talk briefly describes research aiming to catalog human as well as technical factors associated with insider threat risk and summarizes several recent studies that seek to inform the development of more comprehensive, proactive approaches to insider threat assessment.

Zhang, Jiange, Chen, Yue, Yang, Kuiwu, Zhao, Jian, Yan, Xincheng.  2019.  Insider Threat Detection Based on Adaptive Optimization DBN by Grid Search. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :173–175.

Aiming at the problem that one-dimensional parameter optimization in insider threat detection using deep learning will lead to unsatisfactory overall performance of the model, an insider threat detection method based on adaptive optimization DBN by grid search is designed. This method adaptively optimizes the learning rate and the network structure which form the two-dimensional grid, and adaptively selects a set of optimization parameters for threat detection, which optimizes the overall performance of the deep learning model. The experimental results show that the method has good adaptability. The learning rate of the deep belief net is optimized to 0.6, the network structure is optimized to 6 layers, and the threat detection rate is increased to 98.794%. The training efficiency and the threat detection rate of the deep belief net are improved.

Singh, Malvika, Mehtre, B.M., Sangeetha, S..  2019.  User Behavior Profiling Using Ensemble Approach for Insider Threat Detection. 2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA). :1–8.

The greatest threat towards securing the organization and its assets are no longer the attackers attacking beyond the network walls of the organization but the insiders present within the organization with malicious intent. Existing approaches helps to monitor, detect and prevent any malicious activities within an organization's network while ignoring the human behavior impact on security. In this paper we have focused on user behavior profiling approach to monitor and analyze user behavior action sequence to detect insider threats. We present an ensemble hybrid machine learning approach using Multi State Long Short Term Memory (MSLSTM) and Convolution Neural Networks (CNN) based time series anomaly detection to detect the additive outliers in the behavior patterns based on their spatial-temporal behavior features. We find that using Multistate LSTM is better than basic single state LSTM. The proposed method with Multistate LSTM can successfully detect the insider threats providing the AUC of 0.9042 on train data and AUC of 0.9047 on test data when trained with publically available dataset for insider threats.

Novikova, Evgenia, Bekeneva, Yana, Shorov, Andrey.  2019.  The Location-Centric Approach to Employee's Interaction Pattern Detection. 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). :373–378.
The task of the insider threat detection is one of the most sophisticated problems of the information security. The analysis of the logs of the access control system may reveal on how employees move and interact providing thus better understanding on how personnel observe security policies and established business processes. The paper presents an approach to the detection of the location-centric employees' interaction patterns. The authors propose the formal definition of the interaction patterns and present the visualization-driven technique to the extraction of the patterns from the data when any prior information about existing interaction routine and procedures is not available. The proposed approach is demonstrated on the data set provided within VAST MiniChallenge-2 2016 contest.
Le, Duc C., Nur Zincir-Heywood, A..  2019.  Machine Learning Based Insider Threat Modelling and Detection. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :1–6.

Recently, malicious insider attacks represent one of the most damaging threats to companies and government agencies. This paper proposes a new framework in constructing a user-centered machine learning based insider threat detection system on multiple data granularity levels. System evaluations and analysis are performed not only on individual data instances but also on normal and malicious insiders, where insider scenario specific results and delay in detection are reported and discussed. Our results show that the machine learning based detection system can learn from limited ground truth and detect new malicious insiders with a high accuracy.

Kolokotronis, Nicholas, Brotsis, Sotirios, Germanos, Georgios, Vassilakis, Costas, Shiaeles, Stavros.  2019.  On Blockchain Architectures for Trust-Based Collaborative Intrusion Detection. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:21–28.
This paper considers the use of novel technologies for mitigating attacks that aim at compromising intrusion detection systems (IDSs). Solutions based on collaborative intrusion detection networks (CIDNs) could increase the resilience against such attacks as they allow IDS nodes to gain knowledge from each other by sharing information. However, despite the vast research in this area, trust management issues still pose significant challenges and recent works investigate whether these could be addressed by relying on blockchain and related distributed ledger technologies. Towards that direction, the paper proposes the use of a trust-based blockchain in CIDNs, referred to as trust-chain, to protect the integrity of the information shared among the CIDN peers, enhance their accountability, and secure their collaboration by thwarting insider attacks. A consensus protocol is proposed for CIDNs, which is a combination of a proof-of-stake and proof-of-work protocols, to enable collaborative IDS nodes to maintain a reliable and tampered-resistant trust-chain.
Iriqat, Yousef Mohammad, Ahlan, Abd Rahman, Molok, Nurul Nuha Abdul.  2019.  Information Security Policy Perceived Compliance Among Staff in Palestine Universities: An Empirical Pilot Study. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :580–585.

In today's interconnected world, universities recognize the importance of protecting their information assets from internal and external threats. Being the possible insider threats to Information Security, employees are often coined as the weakest link. Both employees and organizations should be aware of this raising challenge. Understanding staff perception of compliance behaviour is critical for universities wanting to leverage their staff capabilities to mitigate Information Security risks. Therefore, this research seeks to get insights into staff perception based on factors adopted from several theories by using proposed constructs i.e. "perceived" practices/policies and "perceived" intention to comply. Drawing from the General Deterrence Theory, Protection Motivation Theory, Theory of Planned Behaviour and Information Reinforcement, within the context of Palestine universities, this paper integrates staff awareness of Information Security Policies (ISP) countermeasures as antecedents to ``perceived'' influencing factors (perceived sanctions, perceived rewards, perceived coping appraisal, and perceived information reinforcement). The empirical study is designed to follow a quantitative research approaches, use survey as a data collection method and questionnaires as the research instruments. Partial least squares structural equation modelling is used to inspect the reliability and validity of the measurement model and hypotheses testing for the structural model. The research covers ISP awareness among staff and seeks to assert that information security is the responsibility of all academic and administrative staff from all departments. Overall, our pilot study findings seem promising, and we found strong support for our theoretical model.

Ikany, Joris, Jazri, Husin.  2019.  A Symptomatic Framework to Predict the Risk of Insider Threats. 2019 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD). :1–5.
The constant changing of technologies have brought to critical infrastructure organisations numerous information security threats such as insider threat. Critical infrastructure organisations have difficulties to early detect and capture the possible vital signs of insider threats due sometimes to lack of effective methodologies or frameworks. It is from this viewpoint that, this paper proposes a symptomatic insider threat risk assessments framework known as Insider Threat Framework for Namibia Critical Infrastructure Organization (ITFNACIO), aimed to predict the probable signs of insider threat based on Symptomatic Analysis (SA), and develop a prototype as a proof of concept. A case study was successfully used to validate and implement the proposed framework; hence, qualitative methodology was employed throughout the whole research process where two (2) insider threats were captured. The proposed insider threat framework can be further developed in multiple cases and a more automated system able to trigger an early warning system of possible insider threat events.
Huang, Jiaju, Klee, Bryan, Schuckers, Daniel, Hou, Daqing, Schuckers, Stephanie.  2019.  Removing Personally Identifiable Information from Shared Dataset for Keystroke Authentication Research. 2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA). :1–7.

Research on keystroke dynamics has the good potential to offer continuous authentication that complements conventional authentication methods in combating insider threats and identity theft before more harm can be done to the genuine users. Unfortunately, the large amount of data required by free-text keystroke authentication often contain personally identifiable information, or PII, and personally sensitive information, such as a user's first name and last name, username and password for an account, bank card numbers, and social security numbers. As a result, there are privacy risks associated with keystroke data that must be mitigated before they are shared with other researchers. We conduct a systematic study to remove PII's from a recent large keystroke dataset. We find substantial amounts of PII's from the dataset, including names, usernames and passwords, social security numbers, and bank card numbers, which, if leaked, may lead to various harms to the user, including personal embarrassment, blackmails, financial loss, and identity theft. We thoroughly evaluate the effectiveness of our detection program for each kind of PII. We demonstrate that our PII detection program can achieve near perfect recall at the expense of losing some useful information (lower precision). Finally, we demonstrate that the removal of PII's from the original dataset has only negligible impact on the detection error tradeoff of the free-text authentication algorithm by Gunetti and Picardi. We hope that this experience report will be useful in informing the design of privacy removal in future keystroke dynamics based user authentication systems.

Chandel, Sonali, Yu, Sun, Yitian, Tang, Zhili, Zhou, Yusheng, Huang.  2019.  Endpoint Protection: Measuring the Effectiveness of Remediation Technologies and Methodologies for Insider Threat. 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :81–89.
With the increase in the incidences of data leakage, enterprises have started to realize that the endpoints (especially mobile devices) used by their employees are the primary cause of data breach in most of the cases. Data shows that employee training, which aims to promote the awareness of protecting the sensitive data of the organization is not very useful. Besides, popular third-party cloud services make it even more difficult for employees to keep the secrets of their workplace safer. This pressing issue has caused the emergence of a significant market for various software products that provide endpoint data protection for these organizations. Our study will discuss some methods and technologies that deal with traditional, negative endpoint protection: Endpoint protection platform (EPP), and another new, positive endpoint protection: Endpoint detection and response (EDR). The comparison and evaluation between EPP and EDR in mechanism and effectiveness will also be shown. The study also aims to analyze the merits, faults, and key features that an excellent protection software should have. The objective of this paper is to assist small-scale and big-scale companies to improve their understanding of insider threats in such rapidly developing cyberspace, which is full of potential risks and attacks. This will also help the companies to have better control over their employee's endpoint to be able to avoid any future data leaks. It will also help negligent users to comprehend how serious is the problem that they are faced with, and how they should be careful in handling their privacy when they are surfing the Internet while being connected to the company's network. This paper aims to contribute to further research on endpoint detection and protection or some similar topics by trying to predict the future of protection products.
Bin Ahmad, Maaz, Asif, Muhammad, Saad, Afshan, Wahab, Abdul.  2019.  Cloud Computing: A Paradigm of More Insider Threats. 2019 4th International Conference on Information Systems Engineering (ICISE). :103–108.
Insider threats are one of the most challenging issues in the world of computer networks. Now a day, most of the companies are relying on cloud services to get scalable data services and to reduce cost. The inclusion of cloud environment has spread the canvas for insider threats because cloud service providers are also there in addition to the organization that outsourced for cloud services. In this paper, multiple existing approaches to handle the insider threats in cloud environment have been investigated and analyzed thoroughly. The comparison of these techniques depicts which better approaches in the paradigm of cloud computing exist.
Aldairi, Maryam, Karimi, Leila, Joshi, James.  2019.  A Trust Aware Unsupervised Learning Approach for Insider Threat Detection. 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI). :89–98.

With the rapidly increasing connectivity in cyberspace, Insider Threat is becoming a huge concern. Insider threat detection from system logs poses a tremendous challenge for human analysts. Analyzing log files of an organization is a key component of an insider threat detection and mitigation program. Emerging machine learning approaches show tremendous potential for performing complex and challenging data analysis tasks that would benefit the next generation of insider threat detection systems. However, with huge sets of heterogeneous data to analyze, applying machine learning techniques effectively and efficiently to such a complex problem is not straightforward. In this paper, we extract a concise set of features from the system logs while trying to prevent loss of meaningful information and providing accurate and actionable intelligence. We investigate two unsupervised anomaly detection algorithms for insider threat detection and draw a comparison between different structures of the system logs including daily dataset and periodically aggregated one. We use the generated anomaly score from the previous cycle as the trust score of each user fed to the next period's model and show its importance and impact in detecting insiders. Furthermore, we consider the psychometric score of users in our model and check its effectiveness in predicting insiders. As far as we know, our model is the first one to take the psychometric score of users into consideration for insider threat detection. Finally, we evaluate our proposed approach on CERT insider threat dataset (v4.2) and show how it outperforms previous approaches.

2019-08-26
Mavroeidis, V., Vishi, K., Jøsang, A..  2018.  A Framework for Data-Driven Physical Security and Insider Threat Detection. 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :1108–1115.

This paper presents PSO, an ontological framework and a methodology for improving physical security and insider threat detection. PSO can facilitate forensic data analysis and proactively mitigate insider threats by leveraging rule-based anomaly detection. In all too many cases, rule-based anomaly detection can detect employee deviations from organizational security policies. In addition, PSO can be considered a security provenance solution because of its ability to fully reconstruct attack patterns. Provenance graphs can be further analyzed to identify deceptive actions and overcome analytical mistakes that can result in bad decision-making, such as false attribution. Moreover, the information can be used to enrich the available intelligence (about intrusion attempts) that can form use cases to detect and remediate limitations in the system, such as loosely-coupled provenance graphs that in many cases indicate weaknesses in the physical security architecture. Ultimately, validation of the framework through use cases demonstrates and proves that PS0 can improve an organization's security posture in terms of physical security and insider threat detection.

2019-05-08
Meng, F., Lou, F., Fu, Y., Tian, Z..  2018.  Deep Learning Based Attribute Classification Insider Threat Detection for Data Security. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :576–581.

With the evolution of network threat, identifying threat from internal is getting more and more difficult. To detect malicious insiders, we move forward a step and propose a novel attribute classification insider threat detection method based on long short term memory recurrent neural networks (LSTM-RNNs). To achieve high detection rate, event aggregator, feature extractor, several attribute classifiers and anomaly calculator are seamlessly integrated into an end-to-end detection framework. Using the CERT insider threat dataset v6.2 and threat detection recall as our performance metric, experimental results validate that the proposed threat detection method greatly outperforms k-Nearest Neighbor, Isolation Forest, Support Vector Machine and Principal Component Analysis based threat detection methods.

Chen, Quan, Kapravelos, Alexandros.  2018.  Mystique: Uncovering Information Leakage from Browser Extensions. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1687–1700.
Browser extensions are small JavaScript, CSS and HTML programs that run inside the browser with special privileges. These programs, often written by third parties, operate on the pages that the browser is visiting, giving the user a programmatic way to configure the browser. The privacy implications that arise by allowing privileged third-party code to execute inside the users' browser are not well understood. In this paper, we develop a taint analysis framework for browser extensions and use it to perform a large scale study of extensions in regard to their privacy practices. We first present a hybrid approach to traditional taint analysis: by leveraging the fact that extension source code is available to the runtime JavaScript engine, we implement as well as enhance traditional taint analysis using information gathered from static data flow and control-flow analysis of the JavaScript source code. Based on this, we further modify the Chromium browser to support taint tracking for extensions. We analyzed 178,893 extensions crawled from the Chrome Web Store between September 2016 and March 2018, as well as a separate set of all available extensions (2,790 in total) for the Opera browser at the time of analysis. From these, our analysis flagged 3,868 (2.13%) extensions as potentially leaking privacy-sensitive information. The top 10 most popular Chrome extensions that we confirmed to be leaking privacy-sensitive information have more than 60 million users combined. We ran the analysis on a local Kubernetes cluster and were able to finish within a month, demonstrating the feasibility of our approach for large-scale analysis of browser extensions. At the same time, our results emphasize the threat browser extensions pose to user privacy, and the need for countermeasures to safeguard against misbehaving extensions that abuse their privileges.
Le, Duc C., Khanchi, Sara, Zincir-Heywood, A. Nur, Heywood, Malcolm I..  2018.  Benchmarking Evolutionary Computation Approaches to Insider Threat Detection. Proceedings of the Genetic and Evolutionary Computation Conference. :1286–1293.
Insider threat detection represents a challenging problem to companies and organizations where malicious actions are performed by authorized users. This is a highly skewed data problem, where the huge class imbalance makes the adaptation of learning algorithms to the real world context very difficult. In this work, applications of genetic programming (GP) and stream active learning are evaluated for insider threat detection. Linear GP with lexicase/multi-objective selection is employed to address the problem under a stationary data assumption. Moreover, streaming GP is employed to address the problem under a non-stationary data assumption. Experiments conducted on a publicly available corporate data set show the capability of the approaches in dealing with extreme class imbalance, stream learning and adaptation to the real world context.
Moore, A. P., Cassidy, T. M., Theis, M. C., Bauer, D., Rousseau, D. M., Moore, S. B..  2018.  Balancing Organizational Incentives to Counter Insider Threat. 2018 IEEE Security and Privacy Workshops (SPW). :237–246.

Traditional security practices focus on negative incentives that attempt to force compliance through constraints, monitoring, and punishment. This paper describes a missing dimension of most organizations' insider threat defense-one that explicitly considers positive incentives for attracting individuals to act in the interests of the organization. Positive incentives focus on properties of the organizational context of workforce management practices - including those relating to organizational supportiveness, coworker connectedness, and job engagement. Without due attention to the organizational context in which insider threats occur, insider misbehaviors may simply reoccur as a natural response to counterproductive or dysfunctional management practices. A balanced combination of positive and negative incentives can improve employees' relationships with the organization and provide a means for employees to better cope with personal and professional stressors. An insider threat program that balances organizational incentives can become an advocate for the workforce and a means for improving employee work life - a welcome message to employees who feel threatened by programs focused on discovering insider wrongdoing.

Basu, S., Chua, Y. H. Victoria, Lee, M. Wah, Lim, W. G., Maszczyk, T., Guo, Z., Dauwels, J..  2018.  Towards a data-driven behavioral approach to prediction of insider-threat. 2018 IEEE International Conference on Big Data (Big Data). :4994–5001.

Insider threats pose a challenge to all companies and organizations. Identification of culprit after an attack is often too late and result in detrimental consequences for the organization. Majority of past research on insider threat has focused on post-hoc personality analysis of known insider threats to identify personality vulnerabilities. It has been proposed that certain personality vulnerabilities place individuals to be at risk to perpetuating insider threats should the environment and opportunity arise. To that end, this study utilizes a game-based approach to simulate a scenario of intellectual property theft and investigate behavioral and personality differences of individuals who exhibit insider-threat related behavior. Features were extracted from games, text collected through implicit and explicit measures, simultaneous facial expression recordings, and personality variables (HEXACO, Dark Triad and Entitlement Attitudes) calculated from questionnaire. We applied ensemble machine learning algorithms and show that they produce an acceptable balance of precision and recall. Our results showcase the possibility of harnessing personality variables, facial expressions and linguistic features in the modeling and prediction of insider-threat.

Yaseen, Q., Alabdulrazzaq, A., Albalas, F..  2019.  A Framework for Insider Collusion Threat Prediction and Mitigation in Relational Databases. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0721–0727.

This paper proposes a framework for predicting and mitigating insider collusion threat in relational database systems. The proposed model provides a robust technique for database architect and administrators to predict insider collusion threat when designing database schema or when granting privileges. Moreover, it proposes a real time monitoring technique that monitors the growing knowledgebases of insiders while executing transactions and the possible collusion insider attacks that may be launched based on insiders accesses and inferences. Furthermore, the paper proposes a mitigating technique based on the segregation of duties principle and the discovered collusion insider threat to mitigate the problem. The proposed model was tested to show its usefulness and applicability.