Visible to the public Biblio

Found 121 results

Filters: Keyword is video surveillance  [Clear All Filters]
2022-01-10
Xu, Ling.  2021.  Application of Artificial Intelligence and Big Data in the Security of Regulatory Places. 2021 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA). :210–213.
This paper analyzes the necessity of artificial intelligence and big data in the security application of regulatory places. The author studies the specific application of artificial intelligence and big data in ideological dynamics management, access control system, video surveillance system, emergency alarm system, perimeter control system, police inspection system, daily behavior management, and system implementation management. The author puts forward how to do technical integration, improve information sharing, strengthen the construction of talents, and increase management fund expenditure. The purpose of this paper is to enhance the security management level of regulatory places and optimize the management environment of regulatory places.
2021-08-02
Bezzine, Ismail, Khan, Zohaib Amjad, Beghdadi, Azeddine, Al-Maadeed, Noor, Kaaniche, Mounir, Al-Maadeed, Somaya, Bouridane, Ahmed, Cheikh, Faouzi Alaya.  2020.  Video Quality Assessment Dataset for Smart Public Security Systems. 2020 IEEE 23rd International Multitopic Conference (INMIC). :1—5.
Security and monitoring systems are more and more demanding in terms of quality, reliability and flexibility especially those dedicated to video surveillance. The quality of the acquired video signal strongly affects the performance of the high level tasks such as visual tracking, face detection and recognition. The design of a video quality assessment metric dedicated to this particular application requires a preliminary study on the common distortions encountered in video surveillance. To this end, we present in this paper a dataset dedicated to video quality assessment in the context of video surveillance. This database consists of a set of common distortions at different levels of annoyance. The subjective tests are performed using a classical pair comparison protocol with some new configurations. The subjective results obtained through the psycho-visual tests are analyzed and compared to some objective video quality assessment metrics. The preliminary results are encouraging and open a new framework for building smart video surveillance based security systems.
2021-07-07
Kaur, Ketanpreet, Sharma, Vikrant, Sachdeva, Monika.  2020.  Framework for FOGIoT based Smart Video Surveillance System (SVSS). 2020 International Conference on Computational Performance Evaluation (ComPE). :797–799.
In this ever updating digitalized world, everything is connected with just few touches away. Our phone is connected with things around us, even we can see live video of our home, shop, institute or company on the phone. But we can't track suspicious activity 24*7 hence needed a smart system to track down any suspicious activity taking place, so it automatically notifies us before any robbery or dangerous activity takes place. We have proposed a framework to tackle down this security matter with the help of sensors enabled cameras(IoT) connected through a FOG layer hence called FOGIoT which consists of small servers configured with Human Activity Analysis Algorithm. Any suspicious activity analyzed will be reported to responsible personnel and the due action will be taken place.
Zhao, Qian, Wang, Shengjin.  2020.  Real-time Face Tracking in Surveillance Videos on Chips for Valuable Face Capturing. 2020 International Conference on Artificial Intelligence and Computer Engineering (ICAICE). :281–284.
Face capturing is a task to capture and store the "best" face of each person passing by the monitor. To some extent, it is similar to face tracking, but uses a different criterion and requires a valuable (i.e., high-quality and recognizable) face selection procedure. Face capturing systems play a critical role in public security. When deployed on edge devices, it is capable of reducing redundant storage in data center and speeding up retrieval of a certain person. However, high computation complexity and high repetition rate caused by ID switch errors are major challenges. In this paper, we propose a novel solution to constructing a real-time low-repetition face capturing system on chips. First, we propose a two-stage association algorithm for memory-efficient and accurate face tracking. Second, we propose a fast and reliable face quality estimation algorithm for valuable face selection. Our pipeline runs at over 20fps on Hisiv 3559A SoC with a single NNIE device for neural network inference, while achieving over 95% recall and less than 0.4 repetition rate in real world surveillance videos.
Elbasi, Ersin.  2020.  Reliable abnormal event detection from IoT surveillance systems. 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1–5.
Surveillance systems are widely used in airports, streets, banks, military areas, borders, hospitals, and schools. There are two types of surveillance systems which are real-time systems and offline surveillance systems. Usually, security people track videos on time in monitoring rooms to find out abnormal human activities. Real-time human tracking from videos is very expensive especially in airports, borders, and streets due to the huge number of surveillance cameras. There are a lot of research works have been done for automated surveillance systems. In this paper, we presented a new surveillance system to recognize human activities from several cameras using machine learning algorithms. Sequences of images are collected from cameras using the internet of things technology from indoor or outdoor areas. A feature vector is created for each recognized moving object, then machine learning algorithms are applied to extract moving object activities. The proposed abnormal event detection system gives very promising results which are more than 96% accuracy in Multilayer Perceptron, Iterative Classifier Optimizer, and Random Forest algorithms.
Beghdadi, Azeddine, Bezzine, Ismail, Qureshi, Muhammad Ali.  2020.  A Perceptual Quality-driven Video Surveillance System. 2020 IEEE 23rd International Multitopic Conference (INMIC). :1–6.
Video-based surveillance systems often suffer from poor-quality video in an uncontrolled environment. This may strongly affect the performance of high-level tasks such as visual tracking, abnormal event detection or more generally scene understanding and interpretation. This work aims to demonstrate the impact and the importance of video quality in video surveillance systems. Here, we focus on the most important challenges and difficulties related to the perceptual quality of the acquired or transmitted images/videos in uncontrolled environments. In this paper, we propose an architecture of a smart surveillance system that incorporates the perceptual quality of acquired scenes. We study the behaviour of some state-of-the-art video quality metrics on some original and distorted sequences from a dedicated surveillance dataset. Through this study, it has been shown that some of the state-of-the-art image/video quality metrics do not work in the context of video-surveillance. This study opens a new research direction to develop the video quality metrics in the context of video surveillance and also to propose a new quality-driven framework of video surveillance system.
Kanwal, Nadia, Asghar, Mamoona Naveed, Samar Ansari, Mohammad, Lee, Brian, Fleury, Martin, Herbst, Marco, Qiao, Yuansong.  2020.  Chain-of-Evidence in Secured Surveillance Videos using Steganography and Hashing. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :257–264.
Video sharing from closed-circuit television video recording or in social media interaction requires self-authentication for responsible and reliable data sharing. Similarly, surveillance video recording is a powerful method of deterring unlawful activities. A Solution-by-Design can be helpful in terms of making a captured video immutable, as such recordings cannot become a piece of evidence until proven to be unaltered. This paper presents a computationally inexpensive method of preserving a chain-of-evidence in surveillance videos using steganography and hashing. The method conforms to the data protection regulations which are increasingly adopted by governments, and is applicable to network edge storage. Security credentials are stored in a hardware wallet independently of the video capture device itself, while evidential information is stored within video frames themselves, independently of the content. The proposed method has turned out to not only preserve the integrity of the stored video data but also results in very limited degradation of the video data due to steganography. Despite the presence of steganographic information, video frames are still available for common image processing tasks such as tracking and classification.
Seneviratne, Piyumi, Perera, Dilanka, Samarasekara, Harinda, Keppitiyagama, Chamath, Thilakarathna, Kenneth, De Soyza, Kasun, Wijesekara, Primal.  2020.  Impact of Video Surveillance Systems on ATM PIN Security. 2020 20th International Conference on Advances in ICT for Emerging Regions (ICTer). :59–64.
ATM transactions are verified using two-factor authentication. The PIN is one of the factors (something you know) and the ATM Card is the other factor (something you have). Therefore, banks make significant investments on PIN Mailers and HSMs to preserve the security and confidentiality in the generation, validation, management and the delivery of the PIN to their customers. Moreover, banks install surveillance cameras inside ATM cubicles as a physical security measure to prevent fraud and theft. However, in some cases, ATM PIN-Pad and the PIN entering process get revealed through the surveillance camera footage itself. We demonstrate that visibility of forearm movements is sufficient to infer PINs with a significant level of accuracy. Video footage of the PIN entry process simulated in an experimental setup was analyzed using two approaches. The human observer-based approach shows that a PIN can be guessed with a 30% of accuracy within 3 attempts whilst the computer-assisted analysis of footage gave an accuracy of 50%. The results confirm that ad-hoc installation of surveillance cameras can weaken ATM PIN security significantly by potentially exposing one factor of a two-factor authentication system. Our investigation also revealed that there are no guidelines, standards or regulations governing the placement of surveillance cameras inside ATM cubicles in Sri Lanka.
Xu, Shenghao, Hung, Kevin.  2020.  Development of an AI-based System for Automatic Detection and Recognition of Weapons in Surveillance Videos. 2020 IEEE 10th Symposium on Computer Applications Industrial Electronics (ISCAIE). :48–52.
Security cameras and video surveillance systems have become important infrastructures for ensuring safety and security of the general public. However, the detection of high-risk situations through these systems are still performed manually in many cities. The lack of manpower in the security sector and limited performance of human may result in undetected dangers or delay in detecting threats, posing risks for the public. In response, various parties have developed real-time and automated solutions for identifying risks based on surveillance videos. The aim of this work is to develop a low-cost, efficient, and artificial intelligence-based solution for the real-time detection and recognition of weapons in surveillance videos under different scenarios. The system was developed based on Tensorflow and preliminarily tested with a 294-second video which showed 7 weapons within 5 categories, including handgun, shotgun, automatic rifle, sniper rifle, and submachine gun. At the intersection over union (IoU) value of 0.50 and 0.75, the system achieved a precision of 0.8524 and 0.7006, respectively.
Kim, Hyungheon, Cha, Youngkyun, Kim, Taewoo, Kim, Pyeongkang.  2020.  A Study on the Security Threats and Privacy Policy of Intelligent Video Surveillance System Considering 5G Network Architecture. 2020 International Conference on Electronics, Information, and Communication (ICEIC). :1–4.
The surveillance video management system is rapidly expanding its scope of application at the request of citizens and the development of related technologies. In addition, as Cloud Computing and 5G network are applied with AI, scope and function of surveillance systems are being enhanced to intelligent CCTV beyond simple monitoring. However, intelligent CCTV systems with Mobile Edge Computing and 5G, which have the risk of privacy infringement. Accordingly, it is necessary to identify various types of security threats that can be occurred through the cloud based surveillance system and to eliminate the risk of privacy and personal information breaches. So, in this paper, we propose a hierarchical cloud based video surveillance system considering security on the 5G Network.
Fan, Xiaosong.  2020.  Analysis of the Design of Digital Video Security Monitoring System Based on Bee Population Optimization Algorithm. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :339–342.
With the concept of “wireless city”, 3G, WIFI and other wireless network coverages have become more extensive. Data transmission rate has achieved a qualitative leap, providing feasibility for the implementation of mobile video surveillance solutions. The mobile video monitoring system based on the bee population optimization algorithm proposed in this paper makes up for the defects of traditional network video surveillance, and according to the video surveillance system monitoring command, the optimal visual effect of the current state of the observed object can be rendered quickly and steadily through the optimization of the camera linkage model and simulation analysis.
2021-06-24
Wu, Chongke, Shao, Sicong, Tunc, Cihan, Hariri, Salim.  2020.  Video Anomaly Detection using Pre-Trained Deep Convolutional Neural Nets and Context Mining. 2020 IEEE/ACS 17th International Conference on Computer Systems and Applications (AICCSA). :1—8.
Anomaly detection is critically important for intelligent surveillance systems to detect in a timely manner any malicious activities. Many video anomaly detection approaches using deep learning methods focus on a single camera video stream with a fixed scenario. These deep learning methods use large-scale training data with large complexity. As a solution, in this paper, we show how to use pre-trained convolutional neural net models to perform feature extraction and context mining, and then use denoising autoencoder with relatively low model complexity to provide efficient and accurate surveillance anomaly detection, which can be useful for the resource-constrained devices such as edge devices of the Internet of Things (IoT). Our anomaly detection model makes decisions based on the high-level features derived from the selected embedded computer vision models such as object classification and object detection. Additionally, we derive contextual properties from the high-level features to further improve the performance of our video anomaly detection method. We use two UCSD datasets to demonstrate that our approach with relatively low model complexity can achieve comparable performance compared to the state-of-the-art approaches.
2021-03-15
Wang, B., Dou, Y., Sang, Y., Zhang, Y., Huang, J..  2020.  IoTCMal: Towards A Hybrid IoT Honeypot for Capturing and Analyzing Malware. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—7.

Nowadays, the emerging Internet-of-Things (IoT) emphasize the need for the security of network-connected devices. Additionally, there are two types of services in IoT devices that are easily exploited by attackers, weak authentication services (e.g., SSH/Telnet) and exploited services using command injection. Based on this observation, we propose IoTCMal, a hybrid IoT honeypot framework for capturing more comprehensive malicious samples aiming at IoT devices. The key novelty of IoTC-MAL is three-fold: (i) it provides a high-interactive component with common vulnerable service in real IoT device by utilizing traffic forwarding technique; (ii) it also contains a low-interactive component with Telnet/SSH service by running in virtual environment. (iii) Distinct from traditional low-interactive IoT honeypots[1], which only analyze family categories of malicious samples, IoTCMal primarily focuses on homology analysis of malicious samples. We deployed IoTCMal on 36 VPS1 instances distributed in 13 cities of 6 countries. By analyzing the malware binaries captured from IoTCMal, we discover 8 malware families controlled by at least 11 groups of attackers, which mainly launched DDoS attacks and digital currency mining. Among them, about 60% of the captured malicious samples ran in ARM or MIPs architectures, which are widely used in IoT devices.

2021-02-15
Rabieh, K., Mercan, S., Akkaya, K., Baboolal, V., Aygun, R. S..  2020.  Privacy-Preserving and Efficient Sharing of Drone Videos in Public Safety Scenarios using Proxy Re-encryption. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :45–52.
Unmanned Aerial Vehicles (UAVs) also known as drones are being used in many applications where they can record or stream videos. One interesting application is the Intelligent Transportation Systems (ITS) and public safety applications where drones record videos and send them to a control center for further analysis. These videos are shared by various clients such as law enforcement or emergency personnel. In such cases, the recording might include faces of civilians or other sensitive information that might pose privacy concerns. While the video can be encrypted and stored in the cloud that way, it can still be accessed once the keys are exposed to third parties which is completely insecure. To prevent such insecurity, in this paper, we propose proxy re-encryption based sharing scheme to enable third parties to access only limited videos without having the original encryption key. The costly pairing operations in proxy re-encryption are not used to allow rapid access and delivery of the surveillance videos to third parties. The key management is handled by a trusted control center, which acts as the proxy to re-encrypt the data. We implemented and tested the approach in a realistic simulation environment using different resolutions under ns-3. The implementation results and comparisons indicate that there is an acceptable overhead while it can still preserve the privacy of drivers and passengers.
2021-02-08
Nikouei, S. Y., Chen, Y., Faughnan, T. R..  2018.  Smart Surveillance as an Edge Service for Real-Time Human Detection and Tracking. 2018 IEEE/ACM Symposium on Edge Computing (SEC). :336—337.

Monitoring for security and well-being in highly populated areas is a critical issue for city administrators, policy makers and urban planners. As an essential part of many dynamic and critical data-driven tasks, situational awareness (SAW) provides decision-makers a deeper insight of the meaning of urban surveillance. Thus, surveillance measures are increasingly needed. However, traditional surveillance platforms are not scalable when more cameras are added to the network. In this work, a smart surveillance as an edge service has been proposed. To accomplish the object detection, identification, and tracking tasks at the edge-fog layers, two novel lightweight algorithms are proposed for detection and tracking respectively. A prototype has been built to validate the feasibility of the idea, and the test results are very encouraging.

2021-01-11
Shin, H. C., Chang, J., Na, K..  2020.  Anomaly Detection Algorithm Based on Global Object Map for Video Surveillance System. 2020 20th International Conference on Control, Automation and Systems (ICCAS). :793—795.

Recently, smart video security systems have been active. The existing video security system is mainly a method of detecting a local abnormality of a unit camera. In this case, it is difficult to obtain the characteristics of each local region and the situation for the entire watching area. In this paper, we developed an object map for the entire surveillance area using a combination of surveillance cameras, and developed an algorithm to detect anomalies by learning normal situations. The surveillance camera in each area detects and tracks people and cars, and creates a local object map and transmits it to the server. The surveillance server combines each local maps to generate a global map for entire areas. Probability maps were automatically calculated from the global maps, and normal and abnormal decisions were performed through trained data about normal situations. For three reporting status: normal, caution, and warning, and the caution report performance shows that normal detection 99.99% and abnormal detection 86.6%.

Khadka, A., Argyriou, V., Remagnino, P..  2020.  Accurate Deep Net Crowd Counting for Smart IoT Video acquisition devices. 2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS). :260—264.

A novel deep neural network is proposed, for accurate and robust crowd counting. Crowd counting is a complex task, as it strongly depends on the deployed camera characteristics and, above all, the scene perspective. Crowd counting is essential in security applications where Internet of Things (IoT) cameras are deployed to help with crowd management tasks. The complexity of a scene varies greatly, and a medium to large scale security system based on IoT cameras must cater for changes in perspective and how people appear from different vantage points. To address this, our deep architecture extracts multi-scale features with a pyramid contextual module to provide long-range contextual information and enlarge the receptive field. Experiments were run on three major crowd counting datasets, to test our proposed method. Results demonstrate our method supersedes the performance of state-of-the-art methods.

Khudhair, A. B., Ghani, R. F..  2020.  IoT Based Smart Video Surveillance System Using Convolutional Neural Network. 2020 6th International Engineering Conference “Sustainable Technology and Development" (IEC). :163—168.

Video surveillance plays an important role in our times. It is a great help in reducing the crime rate, and it can also help to monitor the status of facilities. The performance of the video surveillance system is limited by human factors such as fatigue, time efficiency, and human resources. It would be beneficial for all if fully automatic video surveillance systems are employed to do the job. The automation of the video surveillance system is still not satisfying regarding many problems such as the accuracy of the detector, bandwidth consumption, storage usage, etc. This scientific paper mainly focuses on a video surveillance system using Convolutional Neural Networks (CNN), IoT and cloud. The system contains multi nods, each node consists of a microprocessor(Raspberry Pi) and a camera, the nodes communicate with each other using client and server architecture. The nodes can detect humans using a pretraining MobileNetv2-SSDLite model and Common Objects in Context(COCO) dataset, the captured video will stream to the main node(only one node will communicate with cloud) in order to stream the video to the cloud. Also, the main node will send an SMS notification to the security team to inform the detection of humans. The security team can check the videos captured using a mobile application or web application. Operating the Object detection model of Deep learning will be required a large amount of the computational power, for instance, the Raspberry Pi with a limited in performance for that reason we used the MobileNetv2-SSDLite model.

Fomin, I., Burin, V., Bakhshiev, A..  2020.  Research on Neural Networks Integration for Object Classification in Video Analysis Systems. 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1—5.

Object recognition with the help of outdoor video surveillance cameras is an important task in the context of ensuring the security at enterprises, public places and even private premises. There have long existed systems that allow detecting moving objects in the image sequence from a video surveillance system. Such a system is partially considered in this research. It detects moving objects using a background model, which has certain problems. Due to this some objects are missed or detected falsely. We propose to combine the moving objects detection results with the classification, using a deep neural network. This will allow determining whether a detected object belongs to a certain class, sorting out false detections, discarding the unnecessary ones (sometimes individual classes are unwanted), to divide detected people into the employees in the uniform and all others, etc. The authors perform a network training in the Keras developer-friendly environment that provides for quick building, changing and training of network architectures. The performance of the Keras integration into a video analysis system, using direct Python script execution techniques, is between 6 and 52 ms, while the precision is between 59.1% and 97.2% for different architectures. The integration, made by freezing a selected network architecture with weights, is selected after testing. After that, frozen architecture can be imported into video analysis using the TensorFlow interface for C++. The performance of such type of integration is between 3 and 49 ms. The precision is between 63.4% and 97.8% for different architectures.

Liu, X., Gao, W., Feng, D., Gao, X..  2020.  Abnormal Traffic Congestion Recognition Based on Video Analysis. 2020 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). :39—42.

The incidence of abnormal road traffic events, especially abnormal traffic congestion, is becoming more and more prominent in daily traffic management in China. It has become the main research work of urban traffic management to detect and identify traffic congestion incidents in time. Efficient and accurate detection of traffic congestion incidents can provide a good strategy for traffic management. At present, the detection and recognition of traffic congestion events mainly rely on the integration of road traffic flow data and the passing data collected by electronic police or devices of checkpoint, and then estimating and forecasting road conditions through the method of big data analysis; Such methods often have some disadvantages such as low time-effect, low precision and small prediction range. Therefore, with the help of the current large and medium cities in the public security, traffic police have built video surveillance equipment, through computer vision technology to analyze the traffic flow from video monitoring, in this paper, the motion state and the changing trend of vehicle flow are obtained by using the technology of vehicle detection from video and multi-target tracking based on deep learning, so as to realize the perception and recognition of traffic congestion. The method achieves the recognition accuracy of less than 60 seconds in real-time, more than 80% in detection rate of congestion event and more than 82.5% in accuracy of detection. At the same time, it breaks through the restriction of traditional big data prediction, such as traffic flow data, truck pass data and GPS floating car data, and enlarges the scene and scope of detection.

Amrutha, C. V., Jyotsna, C., Amudha, J..  2020.  Deep Learning Approach for Suspicious Activity Detection from Surveillance Video. 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). :335—339.

Video Surveillance plays a pivotal role in today's world. The technologies have been advanced too much when artificial intelligence, machine learning and deep learning pitched into the system. Using above combinations, different systems are in place which helps to differentiate various suspicious behaviors from the live tracking of footages. The most unpredictable one is human behaviour and it is very difficult to find whether it is suspicious or normal. Deep learning approach is used to detect suspicious or normal activity in an academic environment, and which sends an alert message to the corresponding authority, in case of predicting a suspicious activity. Monitoring is often performed through consecutive frames which are extracted from the video. The entire framework is divided into two parts. In the first part, the features are computed from video frames and in second part, based on the obtained features classifier predict the class as suspicious or normal.

Kanna, J. S. Vignesh, Raj, S. M. Ebenezer, Meena, M., Meghana, S., Roomi, S. Mansoor.  2020.  Deep Learning Based Video Analytics For Person Tracking. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). :1—6.

As the assets of people are growing, security and surveillance have become a matter of great concern today. When a criminal activity takes place, the role of the witness plays a major role in nabbing the criminal. The witness usually states the gender of the criminal, the pattern of the criminal's dress, facial features of the criminal, etc. Based on the identification marks provided by the witness, the criminal is searched for in the surveillance cameras. Surveillance cameras are ubiquitous and finding criminals from a huge volume of surveillance video frames is a tedious process. In order to automate the search process, proposed a novel smart methodology using deep learning. This method takes gender, shirt pattern, and spectacle status as input to find out the object as person from the video log. The performance of this method achieves an accuracy of 87% in identifying the person in the video frame.

2020-12-11
Fujiwara, N., Shimasaki, K., Jiang, M., Takaki, T., Ishii, I..  2019.  A Real-time Drone Surveillance System Using Pixel-level Short-time Fourier Transform. 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). :303—308.

In this study we propose a novel method for drone surveillance that can simultaneously analyze time-frequency responses in all pixels of a high-frame-rate video. The propellers of flying drones rotate at hundreds of Hz and their principal vibration frequency components are much higher than those of their background objects. To separate the pixels around a drone's propellers from its background, we utilize these time-series features for vibration source localization with pixel-level short-time Fourier transform (STFT). We verify the relationship between the number of taps in the STFT computation and the performance of our algorithm, including the execution time and the localization accuracy, by conducting experiments under various conditions, such as degraded appearance, weather, and defocused blur. The robustness of the proposed algorithm is also verified by localizing a flying multi-copter in real-time in an outdoor scenario.

2020-09-28
Gallo, Pierluigi, Pongnumkul, Suporn, Quoc Nguyen, Uy.  2018.  BlockSee: Blockchain for IoT Video Surveillance in Smart Cities. 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1–6.
The growing demand for safety in urban environments is supported by monitoring using video surveillance. The need to analyze multiple video-flows from different cameras deployed around the city by heterogeneous owners introduces vulnerabilities and privacy issues. Video frames, timestamps, and camera settings can be digitally manipulated by malicious users; the positions of cameras, their orientation and their mechanical settings can be physically manipulated. Digital and physical manipulations may have several effects, including the change of the observed scene and the potential violation of neighbors' privacy. To face these risks, we introduce BlockSee, a blockchain-based video surveillance system that jointly provides validation and immutability to camera settings and surveillance videos, making them readily available to authorized users in case of events. The encouraging results obtained with BlockSee pave the way to new distributed city-wide monitoring systems.
2020-07-03
Fitwi, Alem, Chen, Yu, Zhu, Sencun.  2019.  A Lightweight Blockchain-Based Privacy Protection for Smart Surveillance at the Edge. 2019 IEEE International Conference on Blockchain (Blockchain). :552—555.

Witnessing the increasingly pervasive deployment of security video surveillance systems(VSS), more and more individuals have become concerned with the issues of privacy violations. While the majority of the public have a favorable view of surveillance in terms of crime deterrence, individuals do not accept the invasive monitoring of their private life. To date, however, there is not a lightweight and secure privacy-preserving solution for video surveillance systems. The recent success of blockchain (BC) technologies and their applications in the Internet of Things (IoT) shed a light on this challenging issue. In this paper, we propose a Lightweight, Blockchain-based Privacy protection (Lib-Pri) scheme for surveillance cameras at the edge. It enables the VSS to perform surveillance without compromising the privacy of people captured in the videos. The Lib-Pri system transforms the deployed VSS into a system that functions as a federated blockchain network capable of carrying out integrity checking, blurring keys management, feature sharing, and video access sanctioning. The policy-based enforcement of privacy measures is carried out at the edge devices for real-time video analytics without cluttering the network.