Visible to the public Biblio

Filters: Keyword is feature selection  [Clear All Filters]
2023-07-21
Kiruthiga, G, Saraswathi, P, Rajkumar, S, Suresh, S, Dhiyanesh, B, Radha, R.  2022.  Effective DDoS Attack Detection using Deep Generative Radial Neural Network in the Cloud Environment. 2022 7th International Conference on Communication and Electronics Systems (ICCES). :675—681.
Recently, internet services have increased rapidly due to the Covid-19 epidemic. As a result, cloud computing applications, which serve end-users as subscriptions, are rising. Cloud computing provides various possibilities like cost savings, time and access to online resources via the internet for end-users. But as the number of cloud users increases, so does the potential for attacks. The availability and efficiency of cloud computing resources may be affected by a Distributed Denial of Service (DDoS) attack that could disrupt services' availability and processing power. DDoS attacks pose a serious threat to the integrity and confidentiality of computer networks and systems that remain important assets in the world today. Since there is no effective way to detect DDoS attacks, it is a reliable weapon for cyber attackers. However, the existing methods have limitations, such as relatively low accuracy detection and high false rate performance. To tackle these issues, this paper proposes a Deep Generative Radial Neural Network (DGRNN) with a sigmoid activation function and Mutual Information Gain based Feature Selection (MIGFS) techniques for detecting DDoS attacks for the cloud environment. Specifically, the proposed first pre-processing step uses data preparation using the (Network Security Lab) NSL-KDD dataset. The MIGFS algorithm detects the most efficient relevant features for DDoS attacks from the pre-processed dataset. The features are calculated by trust evaluation for detecting the attack based on relative features. After that, the proposed DGRNN algorithm is utilized for classification to detect DDoS attacks. The sigmoid activation function is to find accurate results for prediction in the cloud environment. So thus, the proposed experiment provides effective classification accuracy, performance, and time complexity.
2023-04-14
Safitri, Winda Ayu, Ahmad, Tohari, Hostiadi, Dandy Pramana.  2022.  Analyzing Machine Learning-based Feature Selection for Botnet Detection. 2022 1st International Conference on Information System & Information Technology (ICISIT). :386–391.
In this cyber era, the number of cybercrime problems grows significantly, impacting network communication security. Some factors have been identified, such as malware. It is a malicious code attack that is harmful. On the other hand, a botnet can exploit malware to threaten whole computer networks. Therefore, it needs to be handled appropriately. Several botnet activity detection models have been developed using a classification approach in previous studies. However, it has not been analyzed about selecting features to be used in the learning process of the classification algorithm. In fact, the number and selection of features implemented can affect the detection accuracy of the classification algorithm. This paper proposes an analysis technique for determining the number and selection of features developed based on previous research. It aims to obtain the analysis of using features. The experiment has been conducted using several classification algorithms, namely Decision tree, k-NN, Naïve Bayes, Random Forest, and Support Vector Machine (SVM). The results show that taking a certain number of features increases the detection accuracy. Compared with previous studies, the results obtained show that the average detection accuracy of 98.34% using four features has the highest value from the previous study, 97.46% using 11 features. These results indicate that the selection of the correct number and features affects the performance of the botnet detection model.
2023-03-31
Zhang, Hui, Ding, Jianing, Tan, Jianlong, Gou, Gaopeng, Shi, Junzheng.  2022.  Classification of Mobile Encryption Services Based on Context Feature Enhancement. 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :860–866.
Smart phones have become the preferred way for Chinese Internet users currently. The mobile phone traffic is large from the operating system. These traffic is mainly generated by the services. In the context of the universal encryption of the traffic, classification identification of mobile encryption services can effectively reduce the difficulty of analytical difficulty due to mobile terminals and operating system diversity, and can more accurately identify user access targets, and then enhance service quality and network security management. The existing mobile encryption service classification methods have two shortcomings in feature selection: First, the DL model is used as a black box, and the features of large dimensions are not distinguished as input of classification model, which resulting in sharp increase in calculation complexity, and the actual application is limited. Second, the existing feature selection method is insufficient to use the time and space associated information of traffic, resulting in less robustness and low accuracy of the classification. In this paper, we propose a feature enhancement method based on adjacent flow contextual features and evaluate the Apple encryption service traffic collected from the real world. Based on 5 DL classification models, the refined classification accuracy of Apple services is significantly improved. Our work can provide an effective solution for the fine management of mobile encryption services.
2023-03-17
Masum, Mohammad, Hossain Faruk, Md Jobair, Shahriar, Hossain, Qian, Kai, Lo, Dan, Adnan, Muhaiminul Islam.  2022.  Ransomware Classification and Detection With Machine Learning Algorithms. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0316–0322.
Malicious attacks, malware, and ransomware families pose critical security issues to cybersecurity, and it may cause catastrophic damages to computer systems, data centers, web, and mobile applications across various industries and businesses. Traditional anti-ransomware systems struggle to fight against newly created sophisticated attacks. Therefore, state-of-the-art techniques like traditional and neural network-based architectures can be immensely utilized in the development of innovative ransomware solutions. In this paper, we present a feature selection-based framework with adopting different machine learning algorithms including neural network-based architectures to classify the security level for ransomware detection and prevention. We applied multiple machine learning algorithms: Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), Logistic Regression (LR) as well as Neural Network (NN)-based classifiers on a selected number of features for ransomware classification. We performed all the experiments on one ransomware dataset to evaluate our proposed framework. The experimental results demonstrate that RF classifiers outperform other methods in terms of accuracy, F -beta, and precision scores.
2023-02-17
Georgieva-Trifonova, Tsvetanka.  2022.  Research on Filtering Feature Selection Methods for E-Mail Spam Detection by Applying K-NN Classifier. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1–4.
In the present paper, the application of filtering methods to select features when detecting email spam using the K-NN classifier is examined. The experiments include computation of the accuracy and F-measure of the e-mail texts classification with different methods for feature selection, different number of selected features and two ways to find the distance between dataset examples when executing K-NN classifier - Euclidean distance and cosine similarity. The obtained results are summarized and analyzed.
Ubale, Ganesh, Gaikwad, Siddharth.  2022.  SMS Spam Detection Using TFIDF and Voting Classifier. 2022 International Mobile and Embedded Technology Conference (MECON). :363–366.
In today’s digital world, Mobile SMS (short message service) communication has almost become a part of every human life. Meanwhile each mobile user suffers from the harass of Spam SMS. These Spam SMS constitute veritable nuisance to mobile subscribers. Though hackers or spammers try to intrude in mobile computing devices, SMS support for mobile devices become more vulnerable as attacker tries to intrude into the system by sending unsolicited messages. An attacker can gain remote access over mobile devices. We propose a novel approach that can analyze message content and find features using the TF-IDF techniques to efficiently detect Spam Messages and Ham messages using different Machine Learning Classifiers. The Classifiers going to use in proposed work can be measured with the help of metrics such as Accuracy, Precision and Recall. In our proposed approach accuracy rate will be increased by using the Voting Classifier.
2023-01-05
Tuba, Eva, Alihodzic, Adis, Tuba, Una, Capor Hrosik, Romana, Tuba, Milan.  2022.  Swarm Intelligence Approach for Feature Selection Problem. 2022 10th International Symposium on Digital Forensics and Security (ISDFS). :1–6.
Classification problems have been part of numerous real-life applications in fields of security, medicine, agriculture, and more. Due to the wide range of applications, there is a constant need for more accurate and efficient methods. Besides more efficient and better classification algorithms, the optimal feature set is a significant factor for better classification accuracy. In general, more features can better describe instances, but besides showing differences between instances of different classes, it can also capture many similarities that lead to wrong classification. Determining the optimal feature set can be considered a hard optimization problem for which different metaheuristics, like swarm intelligence algorithms can be used. In this paper, we propose an adaptation of hybridized swarm intelligence (SI) algorithm for feature selection problem. To test the quality of the proposed method, classification was done by k-means algorithm and it was tested on 17 benchmark datasets from the UCI repository. The results are compared to similar approaches from the literature where SI algorithms were used for feature selection, which proves the quality of the proposed hybridized SI method. The proposed method achieved better classification accuracy for 16 datasets. Higher classification accuracy was achieved while simultaneously reducing the number of used features.
Jovanovic, Dijana, Marjanovic, Marina, Antonijevic, Milos, Zivkovic, Miodrag, Budimirovic, Nebojsa, Bacanin, Nebojsa.  2022.  Feature Selection by Improved Sand Cat Swarm Optimizer for Intrusion Detection. 2022 International Conference on Artificial Intelligence in Everything (AIE). :685–690.
The rapid growth of number of devices that are connected to internet of things (IoT) networks, increases the severity of security problems that need to be solved in order to provide safe environment for network data exchange. The discovery of new vulnerabilities is everyday challenge for security experts and many novel methods for detection and prevention of intrusions are being developed for dealing with this issue. To overcome these shortcomings, artificial intelligence (AI) can be used in development of advanced intrusion detection systems (IDS). This allows such system to adapt to emerging threats, react in real-time and adjust its behavior based on previous experiences. On the other hand, the traffic classification task becomes more difficult because of the large amount of data generated by network systems and high processing demands. For this reason, feature selection (FS) process is applied to reduce data complexity by removing less relevant data for the active classification task and therefore improving algorithm's accuracy. In this work, hybrid version of recently proposed sand cat swarm optimizer algorithm is proposed for feature selection with the goal of increasing performance of extreme learning machine classifier. The performance improvements are demonstrated by validating the proposed method on two well-known datasets - UNSW-NB15 and CICIDS-2017, and comparing the results with those reported for other cutting-edge algorithms that are dealing with the same problems and work in a similar configuration.
Khodaskar, Manish, Medhane, Darshan, Ingle, Rajesh, Buchade, Amar, Khodaskar, Anuja.  2022.  Feature-based Intrusion Detection System with Support Vector Machine. 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). :1—7.
Today billions of people are accessing the internet around the world. There is a need for new technology to provide security against malicious activities that can take preventive/ defensive actions against constantly evolving attacks. A new generation of technology that keeps an eye on such activities and responds intelligently to them is the intrusion detection system employing machine learning. It is difficult for traditional techniques to analyze network generated data due to nature, amount, and speed with which the data is generated. The evolution of advanced cyber threats makes it difficult for existing IDS to perform up to the mark. In addition, managing large volumes of data is beyond the capabilities of computer hardware and software. This data is not only vast in scope, but it is also moving quickly. The system architecture suggested in this study uses SVM to train the model and feature selection based on the information gain ratio measure ranking approach to boost the overall system's efficiency and increase the attack detection rate. This work also addresses the issue of false alarms and trying to reduce them. In the proposed framework, the UNSW-NB15 dataset is used. For analysis, the UNSW-NB15 and NSL-KDD datasets are used. Along with SVM, we have also trained various models using Naive Bayes, ANN, RF, etc. We have compared the result of various models. Also, we can extend these trained models to create an ensemble approach to improve the performance of IDS.
2022-09-20
Wang, Xuelei, Fidge, Colin, Nourbakhsh, Ghavameddin, Foo, Ernest, Jadidi, Zahra, Li, Calvin.  2021.  Feature Selection for Precise Anomaly Detection in Substation Automation Systems. 2021 13th IEEE PES Asia Pacific Power & Energy Engineering Conference (APPEEC). :1—6.
With the rapid advancement of the electrical grid, substation automation systems (SASs) have been developing continuously. However, with the introduction of advanced features, such as remote control, potential cyber security threats in SASs are also increased. Additionally, crucial components in SASs, such as protection relays, usually come from third-party vendors and may not be fully trusted. Untrusted devices may stealthily perform harmful or unauthorised behaviours which could compromise or damage SASs, and therefore, bring adverse impacts to the primary plant. Thus, it is necessary to detect abnormal behaviours from an untrusted device before it brings about catastrophic impacts. Anomaly detection techniques are suitable to detect anomalies in SASs as they only bring minimal side-effects to normal system operations. Many researchers have developed various machine learning algorithms and mathematical models to improve the accuracy of anomaly detection. However, without prudent feature selection, it is difficult to achieve high accuracy when detecting attacks launched from internal trusted networks, especially for stealthy message modification attacks which only modify message payloads slightly and imitate patterns of benign behaviours. Therefore, this paper presents choices of features which improve the accuracy of anomaly detection within SASs, especially for detecting “stealthy” attacks. By including two additional features, Boolean control data from message payloads and physical values from sensors, our method improved the accuracy of anomaly detection by decreasing the false-negative rate from 25% to 5% approximately.
2022-09-16
Almseidin, Mohammad, Al-Sawwa, Jamil, Alkasassbeh, Mouhammd.  2021.  Anomaly-based Intrusion Detection System Using Fuzzy Logic. 2021 International Conference on Information Technology (ICIT). :290—295.
Recently, the Distributed Denial of Service (DDOS) attacks has been used for different aspects to denial the number of services for the end-users. Therefore, there is an urgent need to design an effective detection method against this type of attack. A fuzzy inference system offers the results in a more readable and understandable form. This paper introduces an anomaly-based Intrusion Detection (IDS) system using fuzzy logic. The fuzzy logic inference system implemented as a detection method for Distributed Denial of Service (DDOS) attacks. The suggested method was applied to an open-source DDOS dataset. Experimental results show that the anomaly-based Intrusion Detection system using fuzzy logic obtained the best result by utilizing the InfoGain features selection method besides the fuzzy inference system, the results were 91.1% for the true-positive rate and 0.006% for the false-positive rate.
2022-06-14
Zuech, Richard, Hancock, John, Khoshgoftaar, Taghi M..  2021.  Feature Popularity Between Different Web Attacks with Supervised Feature Selection Rankers. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). :30–37.
We introduce the novel concept of feature popularity with three different web attacks and big data from the CSE-CIC-IDS2018 dataset: Brute Force, SQL Injection, and XSS web attacks. Feature popularity is based upon ensemble Feature Selection Techniques (FSTs) and allows us to more easily understand common important features between different cyberattacks, for two main reasons. First, feature popularity lists can be generated to provide an easy comprehension of important features across different attacks. Second, the Jaccard similarity metric can provide a quantitative score for how similar feature subsets are between different attacks. Both of these approaches not only provide more explainable and easier-to-understand models, but they can also reduce the complexity of implementing models in real-world systems. Four supervised learning-based FSTs are used to generate feature subsets for each of our three different web attack datasets, and then our feature popularity frameworks are applied. For these three web attacks, the XSS and SQL Injection feature subsets are the most similar per the Jaccard similarity. The most popular features across all three web attacks are: Flow\_Bytes\_s, FlowİAT\_Max, and Flow\_Packets\_s. While this introductory study is only a simple example using only three web attacks, this feature popularity concept can be easily extended, allowing an automated framework to more easily determine the most popular features across a very large number of attacks and features.
2022-05-19
Aljubory, Nawaf, Khammas, Ban Mohammed.  2021.  Hybrid Evolutionary Approach in Feature Vector for Ransomware Detection. 2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE). :1–6.

Ransomware is one of the most serious threats which constitute a significant challenge in the cybersecurity field. The cybercriminals use this attack to encrypts the victim's files or infect the victim's devices to demand ransom in exchange to restore access to these files and devices. The escalating threat of Ransomware to thousands of individuals and companies requires an urgent need for creating a system capable of proactively detecting and preventing ransomware. In this research, a new approach is proposed to detect and classify ransomware based on three machine learning algorithms (Random Forest, Support Vector Machines , and Näive Bayes). The features set was extracted directly from raw byte using static analysis technique of samples to improve the detection speed. To offer the best detection accuracy, CF-NCF (Class Frequency - Non-Class Frequency) has been utilized for generate features vectors. The proposed approach can differentiate between ransomware and goodware files with a detection accuracy of up to 98.33 percent.

2022-04-13
Bozorov, Suhrobjon.  2021.  DDoS Attack Detection via IDS: Open Challenges and Problems. 2021 International Conference on Information Science and Communications Technologies (ICISCT). :1—4.
This paper discusses DDoS attacks, their current threat level and IDS systems, which are one of the main tools to protect against them. It focuses on the problems encountered by IDS systems in detecting DDoS attacks and the difficulties and challenges of integrating them with artificial intelligence systems today.
2022-03-01
Leevy, Joffrey L., Hancock, John, Khoshgoftaar, Taghi M., Seliya, Naeem.  2021.  IoT Reconnaissance Attack Classification with Random Undersampling and Ensemble Feature Selection. 2021 IEEE 7th International Conference on Collaboration and Internet Computing (CIC). :41–49.
The exponential increase in the use of Internet of Things (IoT) devices has been accompanied by a spike in cyberattacks on IoT networks. In this research, we investigate the Bot-IoT dataset with a focus on classifying IoT reconnaissance attacks. Reconnaissance attacks are a foundational step in the cyberattack lifecycle. Our contribution is centered on the building of predictive models with the aid of Random Undersampling (RUS) and ensemble Feature Selection Techniques (FSTs). As far as we are aware, this type of experimentation has never been performed for the Reconnaissance attack category of Bot-IoT. Our work uses the Area Under the Receiver Operating Characteristic Curve (AUC) metric to quantify the performance of a diverse range of classifiers: Light GBM, CatBoost, XGBoost, Random Forest (RF), Logistic Regression (LR), Naive Bayes (NB), Decision Tree (DT), and a Multilayer Perceptron (MLP). For this study, we determined that the best learners are DT and DT-based ensemble classifiers, the best RUS ratio is 1:1 or 1:3, and the best ensemble FST is our ``6 Agree'' technique.
2022-02-24
Ali, Wan Noor Hamiza Wan, Mohd, Masnizah, Fauzi, Fariza.  2021.  Cyberbullying Predictive Model: Implementation of Machine Learning Approach. 2021 Fifth International Conference on Information Retrieval and Knowledge Management (CAMP). :65–69.
Machine learning is implemented extensively in various applications. The machine learning algorithms teach computers to do what comes naturally to humans. The objective of this study is to do comparison on the predictive models in cyberbullying detection between the basic machine learning system and the proposed system with the involvement of feature selection technique, resampling and hyperparameter optimization by using two classifiers; Support Vector Classification Linear and Decision Tree. Corpus from ASKfm used to extract word n-grams features before implemented into eight different experiments setup. Evaluation on performance metric shows that Decision Tree gives the best performance when tested using feature selection without resampling and hyperparameter optimization involvement. This shows that the proposed system is better than the basic setting in machine learning.
2021-11-08
Afroz, Sabrina, Ariful Islam, S.M, Nawer Rafa, Samin, Islam, Maheen.  2020.  A Two Layer Machine Learning System for Intrusion Detection Based on Random Forest and Support Vector Machine. 2020 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE). :300–303.
Unauthorized access or intrusion is a massive threatening issue in the modern era. This study focuses on designing a model for an ideal intrusion detection system capable of defending a network by alerting the admins upon detecting any sorts of malicious activities. The study proposes a two layered anomaly-based detection model that uses filter co-relation method for dimensionality reduction along with Random forest and Support Vector Machine as its classifiers. It achieved a very good detection rate against all sorts of attacks including a low rate of false alarms as well. The contribution of this study is that it could be of a major help to the computer scientists designing good intrusion detection systems to keep an industry or organization safe from the cyber threats as it has achieved the desired qualities of a functional IDS model.
2021-06-24
ManiArasuSekar, KannanMani S., Swaminathan, Paveethran, Murali, Ritwik, Ratan, Govind K., Siva, Surya V..  2020.  Optimal Feature Selection for Non-Network Malware Classification. 2020 International Conference on Inventive Computation Technologies (ICICT). :82—87.
In this digital age, almost every system and service has moved from a localized to a digital environment. Consequently the number of attacks targeting both personal as well as commercial digital devices has also increased exponentially. In most cases specific malware attacks have caused widespread damage and emotional anguish. Though there are automated techniques to analyse and thwart such attacks, they are still far from perfect. This paper identifies optimal features, which improves the accuracy and efficiency of the classification process, required for malware classification in an attempt to assist automated anti-malware systems identify and block malware families in an attempt to secure the end user and reduce the damage caused by these malicious software.
2021-05-05
Hallaji, Ehsan, Razavi-Far, Roozbeh, Saif, Mehrdad.  2020.  Detection of Malicious SCADA Communications via Multi-Subspace Feature Selection. 2020 International Joint Conference on Neural Networks (IJCNN). :1—8.
Security maintenance of Supervisory Control and Data Acquisition (SCADA) systems has been a point of interest during recent years. Numerous research works have been dedicated to the design of intrusion detection systems for securing SCADA communications. Nevertheless, these data-driven techniques are usually dependant on the quality of the monitored data. In this work, we propose a novel feature selection approach, called MSFS, to tackle undesirable quality of data caused by feature redundancy. In contrast to most feature selection techniques, the proposed method models each class in a different subspace, where it is optimally discriminated. This has been accomplished by resorting to ensemble learning, which enables the usage of multiple feature sets in the same feature space. The proposed method is then utilized to perform intrusion detection in smaller subspaces, which brings about efficiency and accuracy. Moreover, a comparative study is performed on a number of advanced feature selection algorithms. Furthermore, a dataset obtained from the SCADA system of a gas pipeline is employed to enable a realistic simulation. The results indicate the proposed approach extensively improves the detection performance in terms of classification accuracy and standard deviation.
2021-03-09
Herrera, A. E. Hinojosa, Walshaw, C., Bailey, C..  2020.  Improving Black Box Classification Model Veracity for Electronics Anomaly Detection. 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). :1092–1097.
Data driven classification models are useful to assess quality of manufactured electronics. Because decisions are taken based on the models, their veracity is relevant, covering aspects such as accuracy, transparency and clarity. The proposed BB-Stepwise algorithm aims to improve the classification model transparency and accuracy of black box models. K-Nearest Neighbours (KNN) is a black box model which is easy to implement and has achieved good classification performance in different applications. In this paper KNN-Stepwise is illustrated for fault detection of electronics devices. The results achieved shows that the proposed algorithm was able to improve the accuracy, veracity and transparency of KNN models and achieve higher transparency and clarity, and at least similar accuracy than when using Decision Tree models.
2021-02-16
Nandi, S., Phadikar, S., Majumder, K..  2020.  Detection of DDoS Attack and Classification Using a Hybrid Approach. 2020 Third ISEA Conference on Security and Privacy (ISEA-ISAP). :41—47.
In the area of cloud security, detection of DDoS attack is a challenging task such that legitimate users use the cloud resources properly. So in this paper, detection and classification of the attacking packets and normal packets are done by using various machine learning classifiers. We have selected the most relevant features from NSL KDD dataset using five (Information gain, gain ratio, chi-squared, ReliefF, and symmetrical uncertainty) commonly used feature selection methods. Now from the entire selected feature set, the most important features are selected by applying our hybrid feature selection method. Since all the anomalous instances of the dataset do not belong to DDoS category so we have separated only the DDoS packets from the dataset using the selected features. Finally, the dataset has been prepared and named as KDD DDoS dataset by considering the selected DDoS packets and normal packets. This KDD DDoS dataset has been discretized using discretize tool in weka for getting better performance. Finally, this discretize dataset has been applied on some commonly used (Naive Bayes, Bayes Net, Decision Table, J48 and Random Forest) classifiers for determining the detection rate of the classifiers. 10 fold cross validation has been used here for measuring the robustness of the system. To measure the efficiency of our hybrid feature selection method, we have also applied the same set of classifiers on the NSL KDD dataset, where it gives the best anomaly detection rate of 99.72% and average detection rate 98.47% similarly, we have applied the same set of classifiers on NSL DDoS dataset and obtain the average DDoS detection of 99.01% and the best DDoS detection rate of 99.86%. In order to compare the performance of our proposed hybrid method, we have also applied the existing feature selection methods and measured the detection rate using the same set of classifiers. Finally, we have seen that our hybrid approach for detecting the DDoS attack gives the best detection rate compared to some existing methods.
2020-12-28
Barni, M., Nowroozi, E., Tondi, B., Zhang, B..  2020.  Effectiveness of Random Deep Feature Selection for Securing Image Manipulation Detectors Against Adversarial Examples. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2977—2981.

We investigate if the random feature selection approach proposed in [1] to improve the robustness of forensic detectors to targeted attacks, can be extended to detectors based on deep learning features. In particular, we study the transferability of adversarial examples targeting an original CNN image manipulation detector to other detectors (a fully connected neural network and a linear SVM) that rely on a random subset of the features extracted from the flatten layer of the original network. The results we got by considering three image manipulation detection tasks (resizing, median filtering and adaptive histogram equalization), two original network architectures and three classes of attacks, show that feature randomization helps to hinder attack transferability, even if, in some cases, simply changing the architecture of the detector, or even retraining the detector is enough to prevent the transferability of the attacks.

2020-12-14
Deng, M., Wu, X., Feng, P., Zeng, W..  2020.  Sparse Support Vector Machine for Network Behavior Anomaly Detection. 2020 IEEE 8th International Conference on Information, Communication and Networks (ICICN). :199–204.
Network behavior anomaly detection (NBAD) require fast mechanisms for learning from the large scale data. However, the training velocity of general machine learning approach is largely limited by the adopted training weights of all features in the NBAD. In this paper, we notice, however, that the related weights matching of NBAD features is sparse, which is not necessary for holding all weights. Hence, in this paper, we consider an efficient support vector machine (SVM) approach for NBAD by imposing 1 -norm. Essentially, we propose to use sparse SVM (S-SVM), where sparsity in model, i.e. in weights is used to interfere with special feature selection and that can achieve feature selection and classification efficiently.
2020-12-11
Huang, N., Xu, M., Zheng, N., Qiao, T., Choo, K. R..  2019.  Deep Android Malware Classification with API-Based Feature Graph. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :296—303.

The rapid growth of Android malware apps poses a great security threat to users thus it is very important and urgent to detect Android malware effectively. What's more, the increasing unknown malware and evasion technique also call for novel detection method. In this paper, we focus on API feature and develop a novel method to detect Android malware. First, we propose a novel selection method for API feature related with the malware class. However, such API also has a legitimate use in benign app thus causing FP problem (misclassify benign as malware). Second, we further explore structure relationships between these APIs and map to a matrix interpreted as the hand-refined API-based feature graph. Third, a CNN-based classifier is developed for the API-based feature graph classification. Evaluations of a real-world dataset containing 3,697 malware apps and 3,312 benign apps demonstrate that selected API feature is effective for Android malware classification, just top 20 APIs can achieve high F1 of 94.3% under Random Forest classifier. When the available API features are few, classification performance including FPR indicator can achieve effective improvement effectively by complementing our further work.

2020-12-07
Jeong, T., Mandal, A..  2018.  Flexible Selecting of Style to Content Ratio in Neural Style Transfer. 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). :264–269.

Humans have created many pioneers of art from the beginning of time. There are not many notable achievements by an artificial intelligence to create something visually captivating in the field of art. However, some breakthroughs were made in the past few years by learning the differences between the content and style of an image using convolution neural networks and texture synthesis. But most of the approaches have the limitations on either processing time, choosing a certain style image or altering the weight ratio of style image. Therefore, we are to address these restrictions and provide a system which allows any style image selection with a user defined style weight ratio in minimum time possible.