Visible to the public Biblio

Filters: Keyword is image matching  [Clear All Filters]
2023-03-31
Chang, Liang.  2022.  The Research on Fingerprint Encryption Algorithm Based on The Error Correcting Code. 2022 International Conference on Wireless Communications, Electrical Engineering and Automation (WCEEA). :258–262.

In this paper, an overall introduction of fingerprint encryption algorithm is made, and then a fingerprint encryption algorithm with error correction is designed by adding error correction mechanism. This new fingerprint encryption algorithm can produce stochastic key in the form of multinomial coefficient by using the binary system sequencer, encrypt fingerprint, and use the Lagrange difference value to restore the multinomial during authenticating. Due to using the cyclic redundancy check code to find out the most accurate key, the accuracy of this algorithm can be ensured. Experimental result indicates that the fuzzy vault algorithm with error correction can well realize the template protection, and meet the requirements of biological information security protection. In addition, it also indicates that the system's safety performance can be enhanced by chanaing the key's length.

2021-01-15
Nguyen, H. M., Derakhshani, R..  2020.  Eyebrow Recognition for Identifying Deepfake Videos. 2020 International Conference of the Biometrics Special Interest Group (BIOSIG). :1—5.
Deepfake imagery that contains altered faces has become a threat to online content. Current anti-deepfake approaches usually do so by detecting image anomalies, such as visible artifacts or inconsistencies. However, with deepfake advances, these visual artifacts are becoming harder to detect. In this paper, we show that one can use biometric eyebrow matching as a tool to detect manipulated faces. Our method could provide an 0.88 AUC and 20.7% EER for deepfake detection when applied to the highest quality deepfake dataset, Celeb-DF.
2020-12-17
Lagraa, S., Cailac, M., Rivera, S., Beck, F., State, R..  2019.  Real-Time Attack Detection on Robot Cameras: A Self-Driving Car Application. 2019 Third IEEE International Conference on Robotic Computing (IRC). :102—109.

The Robot Operating System (ROS) are being deployed for multiple life critical activities such as self-driving cars, drones, and industries. However, the security has been persistently neglected, especially the image flows incoming from camera robots. In this paper, we perform a structured security assessment of robot cameras using ROS. We points out a relevant number of security flaws that can be used to take over the flows incoming from the robot cameras. Furthermore, we propose an intrusion detection system to detect abnormal flows. Our defense approach is based on images comparisons and unsupervised anomaly detection method. We experiment our approach on robot cameras embedded on a self-driving car.

2020-12-11
Peng, M., Wu, Q..  2019.  Enhanced Style Transfer in Real-Time with Histogram-Matched Instance Normalization. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :2001—2006.

Since the neural networks are utilized to extract information from an image, Gatys et al. found that they could separate the content and style of images and reconstruct them to another image which called Style Transfer. Moreover, there are many feed-forward neural networks have been suggested to speeding up the original method to make Style Transfer become practical application. However, this takes a price: these feed-forward networks are unchangeable because of their fixed parameters which mean we cannot transfer arbitrary styles but only single one in real-time. Some coordinated approaches have been offered to relieve this dilemma. Such as a style-swap layer and an adaptive normalization layer (AdaIN) and soon. Its worth mentioning that we observed that the AdaIN layer only aligns the means and variance of the content feature maps with those of the style feature maps. Our method is aimed at presenting an operational approach that enables arbitrary style transfer in real-time, reserving more statistical information by histogram matching, providing more reliable texture clarity and more humane user control. We achieve performance more cheerful than existing approaches without adding calculation, complexity. And the speed comparable to the fastest Style Transfer method. Our method provides more flexible user control and trustworthy quality and stability.

2020-12-01
Garbo, A., Quer, S..  2018.  A Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices. IEEE Access. 6:52027—52046.
The Moving Picture Experts Group's Compact Descriptors for Visual Search (MPEG's CDVS) intends to standardize technologies in order to enable an interoperable, efficient, and cross-platform solution for internet-scale visual search applications and services. Among the key technologies within CDVS, we recall the format of visual descriptors, the descriptor extraction process, and the algorithms for indexing and matching. Unfortunately, these steps require precision and computation accuracy. Moreover, they are very time-consuming, as they need running times in the order of seconds when implemented on the central processing unit (CPU) of modern mobile devices. In this paper, to reduce computation times and maintain precision and accuracy, we re-design, for many-cores embedded graphical processor units (GPUs), all main local descriptor extraction pipeline phases of the MPEG's CDVS standard. To reach this goal, we introduce new techniques to adapt the standard algorithm to parallel processing. Furthermore, to reduce memory accesses and efficiently distribute the kernel workload, we use new approaches to store and retrieve CDVS information on proper GPU data structures. We present a complete experimental analysis on a large and standard test set. Our experiments show that our GPU-based approach is remarkably faster than the CPU-based reference implementation of the standard, and it maintains a comparable precision in terms of true and false positive rates.
2020-08-28
[Anonymous].  2019.  Multimodal Biometrics Feature Level Fusion for Iris and Hand Geometry Using Chaos-based Encryption Technique. 2019 Fifth International Conference on Image Information Processing (ICIIP). :304—309.
Biometrics has enormous role to authenticate or substantiate an individual's on the basis of their physiological or behavioral attributes for pattern recognition system. Multimodal biometric systems cover up the limitations of single/ uni-biometric system. In this work, the multimodal biometric system is proposed; iris and hand geometry features are fused at feature level. The iris features are extracted by using moments and morphological operations are used to extract the features of hand geometry. The Chaos-based encryption is applied in order to enhance the high security on the database. Accuracy is predicted by performing the matching process. The experimental result shows that the overall performance of multimodal system has increased with accuracy, Genuine Acceptance Rate (GAR) and reduces with False Acceptance Rate (FAR) and False Rejection Rate (FRR) by using chaos with iris and hand geometry biometrics.
Huang, Bai-Ruei, Lin, Chang Hong, Lee, Chia-Han.  2012.  Mobile augmented reality based on cloud computing. and Identification Anti-counterfeiting, Security. :1—5.
In this paper, we implemented a mobile augmented reality system based on cloud computing. This system uses a mobile device with a camera to capture images of book spines and sends processed features to the cloud. In the cloud, the features are compared with the database and the information of the best matched book would be sent back to the mobile device. The information will then be rendered on the display via augmented reality. In order to reduce the transmission cost, the mobile device is used to perform most of the image processing tasks, such as the preprocessing, resizing, corner detection, and augmented reality rendering. On the other hand, the cloud is used to realize routine but large quantity feature comparisons. Using the cloud as the database also makes the future extension much more easily. For our prototype system, we use an Android smart phone as our mobile device, and Chunghwa Telecoms hicloud as the cloud.
2020-08-03
Xin, Le, Li, Yuanji, Shang, Shize, Li, Guangrui, Yang, Yuhao.  2019.  A Template Matching Background Filtering Method for Millimeter Wave Human Security Image. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). :1–6.
In order to solve the interference of burrs, aliasing and other noises in the background area of millimeter wave human security inspection on the objects identification, an adaptive template matching filtering method is proposed. First, the preprocessed original image is segmented by level set algorithm, then the result is used as a template to filter the background of the original image. Finally, the image after background filtered is used as the input of bilateral filtering. The contrast experiments based on the actual millimeter wave image verifies the improvement of this algorithm compared with the traditional filtering method, and proves that this algorithm can filter the background noise of the human security image, retain the image details of the human body area, and is conducive to the object recognition and location in the millimeter wave security image.
2020-05-22
Vijay, Savinu T., Pournami, P. N..  2018.  Feature Based Image Registration using Heuristic Nearest Neighbour Search. 2018 22nd International Computer Science and Engineering Conference (ICSEC). :1—3.
Image registration is the process of aligning images of the same scene taken at different instances, from different viewpoints or by heterogeneous sensors. This can be achieved either by area based or by feature based image matching techniques. Feature based image registration focuses on detecting relevant features from the input images and attaching descriptors to these features. Matching visual descriptions of two images is a major task in image registration. This feature matching is currently done using Exhaustive Search (or Brute-Force) and Nearest Neighbour Search. The traditional method used for nearest neighbour search is by representing the data as k-d trees. This nearest neighbour search can also be performed using combinatorial optimization algorithms such as Simulated Annealing. This work proposes a method to perform image feature matching by nearest neighbour search done based on Threshold Accepting, a faster version of Simulated Annealing.The experiments performed suggest that the proposed algorithm can produce better results within a minimum number of iterations than many existing algorithms.
2019-12-30
Morita, Kazunari, Yoshimura, Hiroki, Nishiyama, Masashi, Iwai, Yoshio.  2018.  Protecting Personal Information using Homomorphic Encryption for Person Re-identification. 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE). :166–167.
We investigate how to protect features corresponding to personal information using homomorphic encryption when matching people in several camera views. Homomorphic encryption can compute a distance between features without decryption. Thus, our method is able to use a computing server on a public network while protecting personal information. To apply homomorphic encryption, our method uses linear quantization to represent each element of the feature as integers. Experimental results show that there is no significant difference in the accuracy of person re-identification with or without homomorphic encryption and linear quantization.
2019-12-10
Deng, Lijin, Piao, Yan, Liu, Shuo.  2018.  Research on SIFT Image Matching Based on MLESAC Algorithm. Proceedings of the 2Nd International Conference on Digital Signal Processing. :17-21.

The difference of sensor devices and the camera position offset will lead the geometric differences of the matching images. The traditional SIFT image matching algorithm has a large number of incorrect matching point pairs and the matching accuracy is low during the process of image matching. In order to solve this problem, a SIFT image matching based on Maximum Likelihood Estimation Sample Consensus (MLESAC) algorithm is proposed. Compared with the traditional SIFT feature matching algorithm, SURF feature matching algorithm and RANSAC feature matching algorithm, the proposed algorithm can effectively remove the false matching feature point pairs during the image matching process. Experimental results show that the proposed algorithm has higher matching accuracy and faster matching efficiency.

2019-01-16
Rodríguez, R. J., Martín-Pérez, M., Abadía, I..  2018.  A tool to compute approximation matching between windows processes. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1–6.
Finding identical digital objects (or artifacts) during a forensic analysis is commonly achieved by means of cryptographic hashing functions, such as MD5, SHA1, or SHA-256, to name a few. However, these functions suffer from the avalanche effect property, which guarantees that if an input is changed slightly the output changes significantly. Hence, these functions are unsuitable for typical digital forensics scenarios where a forensics memory image from a likely compromised machine shall be analyzed. This memory image file contains a snapshot of processes (instances of executable files) which were up on execution when the dumping process was done. However, processes are relocated at memory and contain dynamic data that depend on the current execution and environmental conditions. Therefore, the comparison of cryptographic hash values of different processes from the same executable file will be negative. Bytewise approximation matching algorithms may help in these scenarios, since they provide a similarity measurement in the range [0,1] between similar inputs instead of a yes/no answer (in the range 0,1). In this paper, we introduce ProcessFuzzyHash, a Volatility plugin that enables us to compute approximation hash values of processes contained in a Windows memory dump.
2018-05-01
Cogranne, R., Sedighi, V., Fridrich, J..  2017.  Practical Strategies for Content-Adaptive Batch Steganography and Pooled Steganalysis. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2122–2126.

This paper investigates practical strategies for distributing payload across images with content-adaptive steganography and for pooling outputs of a single-image detector for steganalysis. Adopting a statistical model for the detector's output, the steganographer minimizes the power of the most powerful detector of an omniscient Warden, while the Warden, informed by the payload spreading strategy, detects with the likelihood ratio test in the form of a matched filter. Experimental results with state-of-the-art content-adaptive additive embedding schemes and rich models are included to show the relevance of the results.

2018-04-04
Parchami, M., Bashbaghi, S., Granger, E..  2017.  CNNs with cross-correlation matching for face recognition in video surveillance using a single training sample per person. 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). :1–6.

In video surveillance, face recognition (FR) systems seek to detect individuals of interest appearing over a distributed network of cameras. Still-to-video FR systems match faces captured in videos under challenging conditions against facial models, often designed using one reference still per individual. Although CNNs can achieve among the highest levels of accuracy in many real-world FR applications, state-of-the-art CNNs that are suitable for still-to-video FR, like trunk-branch ensemble (TBE) CNNs, represent complex solutions for real-time applications. In this paper, an efficient CNN architecture is proposed for accurate still-to-video FR from a single reference still. The CCM-CNN is based on new cross-correlation matching (CCM) and triplet-loss optimization methods that provide discriminant face representations. The matching pipeline exploits a matrix Hadamard product followed by a fully connected layer inspired by adaptive weighted cross-correlation. A triplet-based training approach is proposed to optimize the CCM-CNN parameters such that the inter-class variations are increased, while enhancing robustness to intra-class variations. To further improve robustness, the network is fine-tuned using synthetically-generated faces based on still and videos of non-target individuals. Experiments on videos from the COX Face and Chokepoint datasets indicate that the CCM-CNN can achieve a high level of accuracy that is comparable to TBE-CNN and HaarNet, but with a significantly lower time and memory complexity. It may therefore represent the better trade-off between accuracy and complexity for real-time video surveillance applications.

2017-12-20
An, G., Yu, W..  2017.  CAPTCHA Recognition Algorithm Based on the Relative Shape Context and Point Pattern Matching. 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :168–172.
Using shape context descriptors in the distance uneven grouping and its more extensive description of the shape feature, so this descriptor has the target contour point set deformation invariance. However, the twisted adhesions verification code have more outliers and more serious noise, the above-mentioned invariance of the shape context will become very bad, in order to solve the above descriptors' limitations, this article raise a new algorithm based on the relative shape context and point pattern matching to identify codes. And also experimented on the CSDN site's verification code, the result is that the recognition rate is higher than the traditional shape context and the response time is shorter.
2017-03-08
Gómez-Valverde, J. J., Ortuño, J. E., Guerra, P., Hermann, B., Zabihian, B., Rubio-Guivernau, J. L., Santos, A., Drexler, W., Ledesma-Carbayo, M. J..  2015.  Evaluation of speckle reduction with denoising filtering in optical coherence tomography for dermatology. 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). :494–497.

Optical Coherence Tomography (OCT) has shown a great potential as a complementary imaging tool in the diagnosis of skin diseases. Speckle noise is the most prominent artifact present in OCT images and could limit the interpretation and detection capabilities. In this work we evaluate various denoising filters with high edge-preserving potential for the reduction of speckle noise in 256 dermatological OCT B-scans. Our results show that the Enhanced Sigma Filter and the Block Matching 3-D (BM3D) as 2D denoising filters and the Wavelet Multiframe algorithm considering adjacent B-scans achieved the best results in terms of the enhancement quality metrics used. Our results suggest that a combination of 2D filtering followed by a wavelet based compounding algorithm may significantly reduce speckle, increasing signal-to-noise and contrast-to-noise ratios, without the need of extra acquisitions of the same frame.

Lee, K., Kolsch, M..  2015.  Shot Boundary Detection with Graph Theory Using Keypoint Features and Color Histograms. 2015 IEEE Winter Conference on Applications of Computer Vision. :1177–1184.

The TRECVID report of 2010 [14] evaluated video shot boundary detectors as achieving "excellent performance on [hard] cuts and gradual transitions." Unfortunately, while re-evaluating the state of the art of the shot boundary detection, we found that they need to be improved because the characteristics of consumer-produced videos have changed significantly since the introduction of mobile gadgets, such as smartphones, tablets and outdoor activity purposed cameras, and video editing software has been evolving rapidly. In this paper, we evaluate the best-known approach on a contemporary, publicly accessible corpus, and present a method that achieves better performance, particularly on soft transitions. Our method combines color histograms with key point feature matching to extract comprehensive frame information. Two similarity metrics, one for individual frames and one for sets of frames, are defined based on graph cuts. These metrics are formed into temporal feature vectors on which a SVM is trained to perform the final segmentation. The evaluation on said "modern" corpus of relatively short videos yields a performance of 92% recall (at 89% precision) overall, compared to 69% (91%) of the best-known method.

Xu, R., Naman, A. T., Mathew, R., Rüfenacht, D., Taubman, D..  2015.  Motion estimation with accurate boundaries. 2015 Picture Coding Symposium (PCS). :184–188.

This paper investigates several techniques that increase the accuracy of motion boundaries in estimated motion fields of a local dense estimation scheme. In particular, we examine two matching metrics, one is MSE in the image domain and the other one is a recently proposed multiresolution metric that has been shown to produce more accurate motion boundaries. We also examine several different edge-preserving filters. The edge-aware moving average filter, proposed in this paper, takes an input image and the result of an edge detection algorithm, and outputs an image that is smooth except at the detected edges. Compared to the adoption of edge-preserving filters, we find that matching metrics play a more important role in estimating accurate and compressible motion fields. Nevertheless, the proposed filter may provide further improvements in the accuracy of the motion boundaries. These findings can be very useful for a number of recently proposed scalable interactive video coding schemes.

2015-05-01
Hammoud, R.I., Sahin, C.S., Blasch, E.P., Rhodes, B.J..  2014.  Multi-source Multi-modal Activity Recognition in Aerial Video Surveillance. Computer Vision and Pattern Recognition Workshops (CVPRW), 2014 IEEE Conference on. :237-244.

Recognizing activities in wide aerial/overhead imagery remains a challenging problem due in part to low-resolution video and cluttered scenes with a large number of moving objects. In the context of this research, we deal with two un-synchronized data sources collected in real-world operating scenarios: full-motion videos (FMV) and analyst call-outs (ACO) in the form of chat messages (voice-to-text) made by a human watching the streamed FMV from an aerial platform. We present a multi-source multi-modal activity/event recognition system for surveillance applications, consisting of: (1) detecting and tracking multiple dynamic targets from a moving platform, (2) representing FMV target tracks and chat messages as graphs of attributes, (3) associating FMV tracks and chat messages using a probabilistic graph-based matching approach, and (4) detecting spatial-temporal activity boundaries. We also present an activity pattern learning framework which uses the multi-source associated data as training to index a large archive of FMV videos. Finally, we describe a multi-intelligence user interface for querying an index of activities of interest (AOIs) by movement type and geo-location, and for playing-back a summary of associated text (ACO) and activity video segments of targets-of-interest (TOIs) (in both pixel and geo-coordinates). Such tools help the end-user to quickly search, browse, and prepare mission reports from multi-source data.