Visible to the public Biblio

Filters: Keyword is computer network performance evaluation  [Clear All Filters]
2021-04-08
Nasir, N. A., Jeong, S.-H..  2020.  Testbed-based Performance Evaluation of the Information-Centric Network. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :166–169.
Proliferation of the Internet usage is rapidly increasing, and it is necessary to support the performance requirements for multimedia applications, including lower latency, improved security, faster content retrieval, and adjustability to the traffic load. Nevertheless, because the current Internet architecture is a host-oriented one, it often fails to support the necessary demands such as fast content delivery. A promising networking paradigm called Information-Centric Networking (ICN) focuses on the name of the content itself rather than the location of that content. A distinguished alternative to this ICN concept is Content-Centric Networking (CCN) that exploits more of the performance requirements by using in-network caching and outperforms the current Internet in terms of content transfer time, traffic load control, mobility support, and efficient network management. In this paper, instead of using the saturated method of validating a theory by simulation, we present a testbed-based performance evaluation of the ICN network. We used several new functions of the proposed testbed to improve the performance of the basic CCN. In this paper, we also show that the proposed testbed architecture performs better in terms of content delivery time compared to the basic CCN architecture through graphical results.
2021-03-29
Liu, W., Niu, H., Luo, W., Deng, W., Wu, H., Dai, S., Qiao, Z., Feng, W..  2020.  Research on Technology of Embedded System Security Protection Component. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :21—27.

With the development of the Internet of Things (IoT), it has been widely deployed. As many embedded devices are connected to the network and massive amounts of security-sensitive data are stored in these devices, embedded devices in IoT have become the target of attackers. The trusted computing is a key technology to guarantee the security and trustworthiness of devices' execution environment. This paper focuses on security problems on IoT devices, and proposes a security architecture for IoT devices based on the trusted computing technology. This paper implements a security management system for IoT devices, which can perform integrity measurement, real-time monitoring and security management for embedded applications, providing a safe and reliable execution environment and whitelist-based security protection for IoT devices. This paper also designs and implements an embedded security protection system based on trusted computing technology, containing a measurement and control component in the kernel and a remote graphical management interface for administrators. The kernel layer enforces the integrity measurement and control of the embedded application on the device. The graphical management interface communicates with the remote embedded device through the TCP/IP protocol, and provides a feature-rich and user-friendly interaction interface. It implements functions such as knowledge base scanning, whitelist management, log management, security policy management, and cryptographic algorithm performance testing.

2021-03-09
Kamilin, M. H. B., Yamaguchi, S..  2020.  White-Hat Worm Launcher Based on Deep Learning in Botnet Defense System. 2020 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia). :1—2.

This paper proposes a deep learning-based white-hat worm launcher in Botnet Defense System (BDS). BDS uses white-hat botnets to defend an IoT system against malicious botnets. White-hat worm launcher literally launches white-hat worms to create white-hat botnets according to the strategy decided by BDS. The proposed launcher learns with deep learning where is the white-hat worms' right place to successfully drive out malicious botnets. Given a system situation invaded by malicious botnets, it predicts a worms' placement by the learning result and launches them. We confirmed the effect of the proposed launcher through simulating evaluation.

2021-02-16
Mujib, M., Sari, R. F..  2020.  Performance Evaluation of Data Center Network with Network Micro-segmentation. 2020 12th International Conference on Information Technology and Electrical Engineering (ICITEE). :27—32.

Research on the design of data center infrastructure is increasing, both from academia and industry, due to the rapid development of cloud-based applications such as search engines, social networks, and large-scale computing. On a large scale, data centers can consist of hundreds to thousands of servers that require systems with high-performance requirements and low downtime. To meet the network's needs in a dynamic data center, infrastructure of applications and services are growing. It takes a process of designing a network topology so that it can guarantee availability and security. One way to surmount this is by implementing the zero trust security model based on micro-segmentation. Zero trust is a security idea based on the principle of "never trust, always verify" in which no concepts of trust and untrust in network traffic. The zero trust security model implemented network traffic in the form of untrust. Micro-segmentation is a way to achieve zero trust by dividing a network into smaller logical segments to restrict the traffic. In this research, data center network performance based on software-defined networking with zero trust security model using micro-segmentation has been evaluated using a testbed simulation of Cisco Application Centric Infrastructure by measuring the round trip time, jitter, and packet loss during experiments. Performance evaluation results show that micro-segmentation adds an average round trip time of 4 μs and jitter of 11 μs without packet loss so that the security can be improved without significantly affecting network performance on the data center.

2021-02-03
Pashaei, A., Akbari, M. E., Lighvan, M. Z., Teymorzade, H. Ali.  2020.  Improving the IDS Performance through Early Detection Approach in Local Area Networks Using Industrial Control Systems of Honeypot. 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1—5.

The security of Industrial Control system (ICS) of cybersecurity networks ensures that control equipment fails and that regular procedures are available at its control facilities and internal industrial network. For this reason, it is essential to improve the security of industrial control facility networks continuously. Since network security is threatening, industrial installations are irreparable and perhaps environmentally hazardous. In this study, the industrialized Early Intrusion Detection System (EIDS) was used to modify the Intrusion Detection System (IDS) method. The industrial EIDS was implemented using routers, IDS Snort, Industrial honeypot, and Iptables MikroTik. EIDS successfully simulated and implemented instructions written in IDS, Iptables router, and Honeypots. Accordingly, the attacker's information was displayed on the monitoring page, which had been designed for the ICS. The EIDS provides cybersecurity and industrial network systems against vulnerabilities and alerts industrial network security heads in the shortest possible time.

2020-01-27
Benmalek, Mourad, Challal, Yacine, Derhab, Abdelouahid.  2019.  An Improved Key Graph Based Key Management Scheme for Smart Grid AMI Systems. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.

In this paper, we focus on versatile and scalable key management for Advanced Metering Infrastructure (AMI) in Smart Grid (SG). We show that a recently proposed key graph based scheme for AMI systems (VerSAMI) suffers from efficiency flaws in its broadcast key management protocol. Then, we propose a new key management scheme (iVerSAMI) by modifying VerSAMI's key graph structure and proposing a new broadcast key update process. We analyze security and performance of the proposed broadcast key management in details to show that iVerSAMI is secure and efficient in terms of storage and communication overheads.

2018-05-09
Azab, M., Fortes, J. A. B..  2017.  Towards Proactive SDN-Controller Attack and Failure Resilience. 2017 International Conference on Computing, Networking and Communications (ICNC). :442–448.

SDN networks rely mainly on a set of software defined modules, running on generic hardware platforms, and managed by a central SDN controller. The tight coupling and lack of isolation between the controller and the underlying host limit the controller resilience against host-based attacks and failures. That controller is a single point of failure and a target for attackers. ``Linux-containers'' is a successful thin virtualization technique that enables encapsulated, host-isolated execution-environments for running applications. In this paper we present PAFR, a controller sandboxing mechanism based on Linux-containers. PAFR enables controller/host isolation, plug-and-play operation, failure-and-attack-resilient execution, and fast recovery. PAFR employs and manages live remote checkpointing and migration between different hosts to evade failures and attacks. Experiments and simulations show that the frequent employment of PAFR's live-migration minimizes the chance of successful attack/failure with limited to no impact on network performance.

2018-04-11
Medjek, F., Tandjaoui, D., Romdhani, I., Djedjig, N..  2017.  Performance Evaluation of RPL Protocol under Mobile Sybil Attacks. 2017 IEEE Trustcom/BigDataSE/ICESS. :1049–1055.

In Sybil attacks, a physical adversary takes multiple fabricated or stolen identities to maliciously manipulate the network. These attacks are very harmful for Internet of Things (IoT) applications. In this paper we implemented and evaluated the performance of RPL (Routing Protocol for Low-Power and Lossy Networks) routing protocol under mobile sybil attacks, namely SybM, with respect to control overhead, packet delivery and energy consumption. In SybM attacks, Sybil nodes take the advantage of their mobility and the weakness of RPL to handle identity and mobility, to flood the network with fake control messages from different locations. To counter these type of attacks we propose a trust-based intrusion detection system based on RPL.

2018-02-02
Ghosh, U., Chatterjee, P., Tosh, D., Shetty, S., Xiong, K., Kamhoua, C..  2017.  An SDN Based Framework for Guaranteeing Security and Performance in Information-Centric Cloud Networks. 2017 IEEE 10th International Conference on Cloud Computing (CLOUD). :749–752.

Cloud data centers are critical infrastructures to deliver cloud services. Although security and performance of cloud data centers have been well studied in the past, their networking aspects are overlooked. Current network infrastructures in cloud data centers limit the ability of cloud provider to offer guaranteed cloud network resources to users. In order to ensure security and performance requirements as defined in the service level agreement (SLA) between cloud user and provider, cloud providers need the ability to provision network resources dynamically and on the fly. The main challenge for cloud provider in utilizing network resource can be addressed by provisioning virtual networks that support information centric services by separating the control plane from the cloud infrastructure. In this paper, we propose an sdn based information centric cloud framework to provision network resources in order to support elastic demands of cloud applications depending on SLA requirements. The framework decouples the control plane and data plane wherein the conceptually centralized control plane controls and manages the fully distributed data plane. It computes the path to ensure security and performance of the network. We report initial experiment on average round-trip delay between consumers and producers.

Hussein, A., Elhajj, I. H., Chehab, A., Kayssi, A..  2016.  SDN Security Plane: An Architecture for Resilient Security Services. 2016 IEEE International Conference on Cloud Engineering Workshop (IC2EW). :54–59.

Software Defined Networking (SDN) is the new promise towards an easily configured and remotely controlled network. Based on Centralized control, SDN technology has proved its positive impact on the world of network communications from different aspects. Security in SDN, as in traditional networks, is an essential feature that every communication system should possess. In this paper, we propose an SDN security design approach, which strikes a good balance between network performance and security features. We show how such an approach can be used to prevent DDoS attacks targeting either the controller or the different hosts in the network, and how to trace back the source of the attack. The solution lies in introducing a third plane, the security plane, in addition to the data plane, which is responsible for forwarding data packets between SDN switches, and parallel to the control plane, which is responsible for rule and data exchange between the switches and the SDN controller. The security plane is designed to exchange security-related data between a third party agent on the switch and a third party software module alongside the controller. Our evaluation shows the capability of the proposed system to enforce different levels of real-time user-defined security with low overhead and minimal configuration.

2017-02-21
J. Pan, R. Jain, S. Paul.  2015.  "Enhanced Evaluation of the Interdomain Routing System for Balanced Routing Scalability and New Internet Architecture Deployments". IEEE Systems Journal. 9:892-903.

Internet is facing many challenges that cannot be solved easily through ad hoc patches. To address these challenges, many research programs and projects have been initiated and many solutions are being proposed. However, before we have a new architecture that can motivate Internet service providers (ISPs) to deploy and evolve, we need to address two issues: 1) know the current status better by appropriately evaluating the existing Internet; and 2) find how various incentives and strategies will affect the deployment of the new architecture. For the first issue, we define a series of quantitative metrics that can potentially unify results from several measurement projects using different approaches and can be an intrinsic part of future Internet architecture (FIA) for monitoring and evaluation. Using these metrics, we systematically evaluate the current interdomain routing system and reveal many “autonomous-system-level” observations and key lessons for new Internet architectures. Particularly, the evaluation results reveal the imbalance underlying the interdomain routing system and how the deployment of FIAs can benefit from these findings. With these findings, for the second issue, appropriate deployment strategies of the future architecture changes can be formed with balanced incentives for both customers and ISPs. The results can be used to shape the short- and long-term goals for new architectures that are simple evolutions of the current Internet (so-called dirty-slate architectures) and to some extent to clean-slate architectures.

2015-05-06
Zhenlong Yuan, Cuilan Du, Xiaoxian Chen, Dawei Wang, Yibo Xue.  2014.  SkyTracer: Towards fine-grained identification for Skype traffic via sequence signatures. Computing, Networking and Communications (ICNC), 2014 International Conference on. :1-5.

Skype has been a typical choice for providing VoIP service nowadays and is well-known for its broad range of features, including voice-calls, instant messaging, file transfer and video conferencing, etc. Considering its wide application, from the viewpoint of ISPs, it is essential to identify Skype flows and thus optimize network performance and forecast future needs. However, in general, a host is likely to run multiple network applications simultaneously, which makes it much harder to classify each and every Skype flow from mixed traffic exactly. Especially, current techniques usually focus on host-level identification and do not have the ability to identify Skype traffic at the flow-level. In this paper, we first reveal the unique sequence signatures of Skype UDP flows and then implement a practical online system named SkyTracer for precise Skype traffic identification. To the best of our knowledge, this is the first time to utilize the strong sequence signatures to carry out early identification of Skype traffic. The experimental results show that SkyTracer can achieve very high accuracy at fine-grained level in identifying Skype traffic.

2015-05-01
Bin Hu, Gharavi, H..  2014.  Smart Grid Mesh Network Security Using Dynamic Key Distribution With Merkle Tree 4-Way Handshaking. Smart Grid, IEEE Transactions on. 5:550-558.

Distributed mesh sensor networks provide cost-effective communications for deployment in various smart grid domains, such as home area networks (HAN), neighborhood area networks (NAN), and substation/plant-generation local area networks. This paper introduces a dynamically updating key distribution strategy to enhance mesh network security against cyber attack. The scheme has been applied to two security protocols known as simultaneous authentication of equals (SAE) and efficient mesh security association (EMSA). Since both protocols utilize 4-way handshaking, we propose a Merkle-tree based handshaking scheme, which is capable of improving the resiliency of the network in a situation where an intruder carries a denial of service attack. Finally, by developing a denial of service attack model, we can then evaluate the security of the proposed schemes against cyber attack, as well as network performance in terms of delay and overhead.