Biblio
We propose a coding scheme for covert communication over additive white Gaussian noise channels, which extends a previous construction for discrete memoryless channels. We first show how sparse signaling with On-Off keying fails to achieve the covert capacity but that a modification allowing the use of binary phase-shift keying for "on" symbols recovers the loss. We then construct a modified pulse-position modulation scheme that, combined with multilevel coding, can achieve the covert capacity with low-complexity error-control codes. The main contribution of this work is to reconcile the tension between diffuse and sparse signaling suggested by earlier information-theoretic results.
Covert communications, where a transmitter Alice wishes to hide the presence of her transmitted signal from a watchful adversary Willie, has been considered extensively in recent years. Those investigations have generally considered physical-layer models, where the adversary has access to a sophisticated (often optimal) receiver to determine whether a transmission has taken place, and have addressed the question of what rate can information be communicated covertly. More recent investigations have begun to consider the change in covert rate when Willie has uncertainty about the physical layer environment. Here, we move up the protocol stack to consider the covert rate when Willie is watching the medium-access control (MAC) layer in a network employing a random access MAC such as slotted ALOHA. Based on the rate of collisions and potentially the number of users involved in those collisions, Willie attempts to determine whether unauthorized (covert) users are accessing the channel. In particular, we assume different levels of sophistication in Willie's receiver, ranging from a receiver that only can detect whether there was a collision or not, to one that can always tell exactly how many packets were on the channel in the random access system. In each case, we derive closed-form expressions for the achievable covert rates in the system. The achievable rates exhibit significantly different behavior than that observed in the study of covert systems at the physical layer.
In this paper, we present a chaos-based information rotated polar coding scheme for enhancing the reliability and security of visible light communication (VLC) systems. In our scheme, we rotate the original information, wherein the rotation principle is determined by two chaotic sequences. Then the rotated information is encoded by secure polar coding scheme. After the channel polarization achieved by the polar coding, we could identify the bit-channels providing good transmission conditions for legitimate users and the bit-channels with bad conditions for eavesdroppers. Simulations are performed over the visible light wiretap channel. The results demonstrate that compared with existing schemes, the proposed scheme can achieve better reliability and security even when the eavesdroppers have better channel conditions.
This article presents a practical approach for secure key exchange exploiting reciprocity in wireless transmission. The method relies on the reciprocal channel phase to mask points of a Phase Shift Keying (PSK) constellation. Masking is achieved by adding (modulo 2π) the measured reciprocal channel phase to the PSK constellation points carrying some of the key bits. As the channel phase is uniformly distributed in [0, 2π], knowing the sum of the two phases does not disclose any information about any of its two components. To enlarge the key size over a static or slow fading channel, the Radio Frequency (RF) propagation path is perturbed to create independent realizations of multi-path fading. Prior techniques have relied on quantizing the reciprocal channel state measured at the two ends and thereby suffer from information leakage in the process of key consolidation (ensuring the two ends have access to the same key). The proposed method does not suffer from such shortcomings as raw key bits can be equipped with Forward Error Correction (FEC) without affecting the masking (zero information leakage) property. To eavesdrop a phase value shared in this manner, the Eavesdropper (Eve) would require to solve a system of linear equations defined over angles, each equation corresponding to a possible measurement by the Eve. Channel perturbation is performed such that each new channel state creates an independent channel realization for the legitimate nodes, as well as for each of Eves antennas. As a result, regardless of the Eves Signal-to-Noise Ratio (SNR) and number of antennas, Eve will always face an under-determined system of equations. On the other hand, trying to solve any such under-determined system of linear equations in terms of an unknown phase will not reveal any useful information about the actual answer, meaning that the distribution of the answer remains uniform in [0, 2π].
We consider a setup in which the channel from Alice to Bob is less noisy than the channel from Eve to Bob. We show that there exist encoding and decoding which accomplish error correction and authentication simultaneously; that is, Bob is able to correctly decode a message coming from Alice and reject a message coming from Eve with high probability. The system does not require any secret key shared between Alice and Bob, provides information theoretic security, and can safely be composed with other protocols in an arbitrary context.
Given a code used to send a message to two receivers through a degraded discrete memoryless broadcast channel (DM-BC), the sender wishes to alter the codewords to achieve the following goals: (i) the original broadcast communication continues to take place, possibly at the expense of a tolerable increase of the decoding error probability; and (ii) an additional covert message can be transmitted to the stronger receiver such that the weaker receiver cannot detect the existence of this message. The main results are: (a) feasibility of covert communications is proven by using a random coding argument for general DM-BCs; and (b) necessary conditions for establishing covert communications are described and an impossibility (converse) result is presented for a particular class of DM-BCs. Together, these results characterize the asymptotic fundamental limits of covert communications for this particular class of DM-BCs within an arbitrarily small gap.
We consider transmissions of secure messages over a burst erasure wiretap channel under decoding delay constraint. For block codes we introduce and study delay optimal secure burst erasure correcting (DO-SBE) codes that provide perfect security and recover a burst of erasures of a limited length with minimum possible delay. Our explicit constructions of DO-SBE block codes achieve maximum secrecy rate. We also consider a model of a burst erasure wiretap channel for the streaming setup, where in any sliding window of a given size, in a stream of encoded source packets, the eavesdropper is able to observe packets in an interval of a given size. For that model we obtain an information theoretic upper bound on the secrecy rate for delay optimal streaming codes. We show that our block codes can be used for construction of delay optimal burst erasure correcting streaming codes which provide perfect security and meet the upper bound for a certain class of code parameters.
For secure and high-quality wireless transmission, we propose a chaos multiple-input multiple-output (C-MIMO) transmission scheme, in which physical layer security and a channel coding effect with a coding rate of 1 are obtained by chaotic MIMO block modulation. In previous studies, we introduced a log-likelihood ratio (LLR) to C-MIMO to exploit LLR-based outer channel coding and turbo decoding, and obtained further coding gain. However, we only studied the concatenation of turbo code, low-density parity check (LDPC) code, and convolutional code which were relatively high-complexity or weak codes; thus, outer code having further low-complexity and strong error correction ability were expected. In particular, a transmission system with short and good code is required for control signaling, such as in 5G networks. Therefore, in this paper, we propose a polar code concatenation to C-MIMO, and introduce soft successive decoding (SCAD) and soft successive cancellation list decoding (SSCLD) as LLR-based turbo decoding for polar code. We numerically evaluate the bit error rate performance of the proposed scheme, and compare it to the conventional LDPC-concatenated transmission.
It is investigated how to achieve semantic security for the wiretap channel. A new type of functions called biregular irreducible (BRI) functions, similar to universal hash functions, is introduced. BRI functions provide a universal method of establishing secrecy. It is proved that the known secrecy rates of any discrete and Gaussian wiretap channel are achievable with semantic security by modular wiretap codes constructed from a BRI function and an error-correcting code. A characterization of BRI functions in terms of edge-disjoint biregular graphs on a common vertex set is derived. This is used to study examples of BRI functions and to construct new ones.
In this paper, we propose a frozen bit selection scheme for polar coding scheme combined with physical layer security that enhances the security of two legitimate users on a wiretap channel. By flipping certain frozen bits, the bit-error rate (BER) of an eavesdropper is maximized while the BER of the legitimate receiver is unaffected. An ARQ protocol is proposed that only feeds back a small proportion of the frozen bits to the transmitter, which increases the secrecy rate. The scheme is evaluated on a wiretap channel affected by impulsive noise and we consider cases where the eavesdropper's channel is actually more impulsive than the main channel. Simulation results show that the proposed scheme ensures the eavesdropper's BER is high even when only one frozen bit is flipped and this is achieved even when their channel is more impulsive than the main channel.