Biblio
Over the years, technology has reformed the perception of the world related to security concerns. To tackle security problems, we proposed a system capable of detecting security alerts. System encompass audio events that occur as an outlier against background of unusual activity. This ambiguous behaviour can be handled by auditory classification. In this paper, we have discussed two techniques of extracting features from sound data including: time-based and signal based features. In first technique, we preserve time-series nature of sound, while in other signal characteristics are focused. Convolution neural network is applied for categorization of sound. Major aim of research is security challenges, so we have generated data related to surveillance in addition to available datasets such as UrbanSound 8k and ESC-50 datasets. We have achieved 94.6% accuracy for proposed methodology based on self-generated dataset. Improved accuracy on locally prepared dataset demonstrates novelty in research.
A new approach to micro-Doppler signal analysis is presented in this article. Novel chirp rate estimators in the time-frequency domain were used for this purpose, which provided the chirp rate of micro-Doppler signatures, allowing the classification of objects in the urban environment. As an example verifying the method, a signal from a high-resolution radar with a linear frequency modulated continuous wave (FMCW) recording an echo reflected from a pedestrian was used to validate the proposed algorithms for chirp rate estimation. The obtained results are plotted on saturated accelerograms, giving an additional parameter dedicated for target classification in security systems utilizing radar sensors for target detection.
``Style transfer'' among images has recently emerged as a very active research topic, fuelled by the power of convolution neural networks (CNNs), and has become fast a very popular technology in social media. This paper investigates the analogous problem in the audio domain: How to transfer the style of a reference audio signal to a target audio content? We propose a flexible framework for the task, which uses a sound texture model to extract statistics characterizing the reference audio style, followed by an optimization-based audio texture synthesis to modify the target content. In contrast to mainstream optimization-based visual transfer method, the proposed process is initialized by the target content instead of random noise and the optimized loss is only about texture, not structure. These differences proved key for audio style transfer in our experiments. In order to extract features of interest, we investigate different architectures, whether pre-trained on other tasks, as done in image style transfer, or engineered based on the human auditory system. Experimental results on different types of audio signal confirm the potential of the proposed approach.
Vehicular Ad Hoc Networks (VANETs) enable vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications that bring many benefits and conveniences to improve the road safety and drive comfort in future transportation systems. Sybil attack is considered one of the most risky threats in VANETs since a Sybil attacker can generate multiple fake identities with false messages to severely impair the normal functions of safety-related applications. In this paper, we propose a novel Sybil attack detection method based on Received Signal Strength Indicator (RSSI), Voiceprint, to conduct a widely applicable, lightweight and full-distributed detection for VANETs. To avoid the inaccurate position estimation according to predefined radio propagation models in previous RSSI-based detection methods, Voiceprint adopts the RSSI time series as the vehicular speech and compares the similarity among all received time series. Voiceprint does not rely on any predefined radio propagation model, and conducts independent detection without the support of the centralized infrastructure. It has more accurate detection rate in different dynamic environments. Extensive simulations and real-world experiments demonstrate that the proposed Voiceprint is an effective method considering the cost, complexity and performance.
Specifics of an alias-free digitizer application for compressed digitizing and recording of wideband signals are considered. Signal sampling in this case is performed on the basis of picosecond resolution event timing, the digitizer actually is a subsystem of Event Timer A033-ET and specific events that are detected and then timed are the signal and reference sine-wave crossings. The used approach to development of this subsystem is described and some results of experimental studies are given.
An identity authentication scheme is proposed combining with biometric encryption, public key cryptography of homomorphism and predicate encryption technology under the cloud computing environment. Identity authentication scheme is proposed based on the voice and homomorphism technology. The scheme is divided into four stages, register and training template stage, voice login and authentication stage, authorization stage, and audit stage. The results prove the scheme has certain advantages in four aspects.
Suppose that you are at a music festival checking on an artist, and you would like to quickly know about the song that is being played (e.g., title, lyrics, album, etc.). If you have a smartphone, you could record a sample of the live performance and compare it against a database of existing recordings from the artist. Services such as Shazam or SoundHound will not work here, as this is not the typical framework for audio fingerprinting or query-by-humming systems, as a live performance is neither identical to its studio version (e.g., variations in instrumentation, key, tempo, etc.) nor it is a hummed or sung melody. We propose an audio fingerprinting system that can deal with live version identification by using image processing techniques. Compact fingerprints are derived using a log-frequency spectrogram and an adaptive thresholding method, and template matching is performed using the Hamming similarity and the Hough Transform.
This article presents results of the recognition process of acoustic fingerprints from a noise source using spectral characteristics of the signal. Principal Components Analysis (PCA) is applied to reduce the dimensionality of extracted features and then a classifier is implemented using the method of the k-nearest neighbors (KNN) to identify the pattern of the audio signal. This classifier is compared with an Artificial Neural Network (ANN) implementation. It is necessary to implement a filtering system to the acquired signals for 60Hz noise reduction generated by imperfections in the acquisition system. The methods described in this paper were used for vessel recognition.