Visible to the public Biblio

Filters: Keyword is optical pumping  [Clear All Filters]
2022-02-04
Yang, Fan, Wang, Xinliang, Shi, Junru, Guan, Yong, Bai, Yang, Fan, Sichen, Ruan, Jun, Zhang, Shougang.  2021.  Research on Automatic Demagnetization for Cylindrical Magnetic Shielding. 2021 IEEE 4th International Electrical and Energy Conference (CIEEC). :1–6.
Magnetic shielding is an important part in atomic clock’s physical system. The demagnetization of the assembled magnetic shielding system plays an important role in improving atomic clock’s performance. In terms of the drawbacks in traditional attenuated alternating-current demagnetizing method, this paper proposes a novel method — automatically attenuated alternating-current demagnetizing method. Which is implemented by controlling the demagnetization current waveform thorough the signal source’s modulation, so that these parameters such as demagnetizing current frequency, amplitude, transformation mode and demagnetizing period are precisely adjustable. At the same time, this demagnetization proceeds automatically, operates easily, and works steadily. We have the pulsed optically pumped (POP) rubidium atomic clock’s magnetic shielding system for the demagnetization experiment, the magnetic field value reached 1nT/7cm. Experiments show that novel method can effectively realize the demagnetization of the magnetic shielding system, and well meets the atomic clock’s working requirements.
2018-08-23
Avrutin, E. A., Ryvkin, B. S., Kostamovaara, J. T..  2017.  Increasing output power of pulsed-eye safe wavelength range laser diodes by strong doping of the n-optical confinement layer. 2017 IEEE High Power Diode Lasers and Systems Conference (HPD). :17–18.

A semi-analytical model for internal optical losses at high power in a 1.5 μm laser diode with strong n-doping in the n-side of the optical confinement layer is created. The model includes intervalence band absorption by holes supplied by both current flow and two-photon absorption. The resulting losses are shown to be substantially lower than those in a similar, but weakly doped structure. Thus a significant improvement in the output power and efficiency by strong n-doping is predicted.

Bader, S., Gerlach, P., Michalzik, R..  2017.  Optically controlled current confinement in parallel-driven VCSELs. 2017 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC). :1–1.

We have presented a unique PT-VCSEL arrangement which experimentally demonstrates the process of optically controlled current confinement. Lessons learned will be transferred to future generations of solitary device which will be optimized with respect to the degree of confinement (depending on the parameters of the PT, in particular the current gain), threshold current and electro-optic efficiency.

2015-05-04
Chitnis, P.V., Lloyd, H., Silverman, R.H..  2014.  An adaptive interferometric sensor for all-optical photoacoustic microscopy. Ultrasonics Symposium (IUS), 2014 IEEE International. :353-356.

Conventional photoacoustic microscopy (PAM) involves detection of optically induced thermo-elastic waves using ultrasound transducers. This approach requires acoustic coupling and the spatial resolution is limited by the focusing properties of the transducer. We present an all-optical PAM approach that involved detection of the photoacoustically induced surface displacements using an adaptive, two-wave mixing interferometer. The interferometer consisted of a 532-nm, CW laser and a Bismuth Silicon Oxide photorefractive crystal (PRC) that was 5×5×5 mm3. The laser beam was expanded to 3 mm and split into two paths, a reference beam that passed directly through the PRC and a signal beam that was focused at the surface through a 100-X, infinity-corrected objective and returned to the PRC. The PRC matched the wave front of the reference beam to that of the signal beam for optimal interference. The interference of the two beams produced optical-intensity modulations that were correlated with surface displacements. A GHz-bandwidth photoreceiver, a low-noise 20-dB amplifier, and a 12-bit digitizer were employed for time-resolved detection of the surface-displacement signals. In combination with a 5-ns, 532-nm pump laser, the interferometric probe was employed for imaging ink patterns, such as a fingerprint, on a glass slide. The signal beam was focused at a reflective cover slip that was separated from the fingerprint by 5 mm of acoustic-coupling gel. A 3×5 mm2 area of the coverslip was raster scanned with 100-μm steps and surface-displacement signals at each location were averaged 20 times. Image reconstruction based on time reversal of the PA-induced displacement signals produced the photoacoustic image of the ink patterns. The reconstructed image of the fingerprint was consistent with its photograph, which demonstrated the ability of our system to resolve micron-scaled features at a depth of 5 mm.