Visible to the public Biblio

Filters: Keyword is Bit error rate  [Clear All Filters]
2023-09-20
Rawat, Amarjeet, Maheshwari, Himani, Khanduja, Manisha, Kumar, Rajiv, Memoria, Minakshi, Kumar, Sanjeev.  2022.  Sentiment Analysis of Covid19 Vaccines Tweets Using NLP and Machine Learning Classifiers. 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:225—230.
Sentiment Analysis (SA) is an approach for detecting subjective information such as thoughts, outlooks, reactions, and emotional state. The majority of previous SA work treats it as a text-classification problem that requires labelled input to train the model. However, obtaining a tagged dataset is difficult. We will have to do it by hand the majority of the time. Another concern is that the absence of sufficient cross-domain portability creates challenging situation to reuse same-labelled data across applications. As a result, we will have to manually classify data for each domain. This research work applies sentiment analysis to evaluate the entire vaccine twitter dataset. The work involves the lexicon analysis using NLP libraries like neattext, textblob and multi class classification using BERT. This word evaluates and compares the results of the machine learning algorithms.
2023-07-31
Skvortcov, Pavel, Koike-Akino, Toshiaki, Millar, David S., Kojima, Keisuke, Parsons, Kieran.  2022.  Dual Coding Concatenation for Burst-Error Correction in Probabilistic Amplitude Shaping. Journal of Lightwave Technology. 40:5502—5513.
We propose the use of dual coding concatenation for mitigation of post-shaping burst errors in probabilistic amplitude shaping (PAS) architectures. The proposed dual coding concatenation for PAS is a hybrid integration of conventional reverse concatenation and forward concatenation, i.e., post-shaping forward error correction (FEC) layer and pre-shaping FEC layer, respectively. A low-complexity architecture based on parallel Bose–Chaudhuri–Hocquenghem (BCH) codes is introduced for the pre-shaping FEC layer. Proposed dual coding concatenation can relax bit error rate (BER) requirement after post-shaping soft-decision (SD) FEC codes by an order of magnitude, resulting in a gain of up to 0.25 dB depending on the complexity of post-shaping FEC. Also, combined shaping and coding performance was analyzed based on sphere shaping and the impact of shaping length on coding performance was demonstrated.
Conference Name: Journal of Lightwave Technology
2023-06-09
Sun, Zeyu, Zhang, Chi.  2022.  Research on Relation Extraction of Fusion Entity Enhancement and Shortest Dependency Path based on BERT. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:766—770.
Deep learning models rely on single word features and location features of text to achieve good results in text relation extraction tasks. However, previous studies have failed to make full use of semantic information contained in sentence dependency syntax trees, and data sparseness and noise propagation still affect classification models. The BERT(Bidirectional Encoder Representations from Transformers) pretrained language model provides a better representation of natural language processing tasks. And entity enhancement methods have been proved to be effective in relation extraction tasks. Therefore, this paper proposes a combination of the shortest dependency path and entity-enhanced BERT pre-training language model for model construction to reduce the impact of noise terms on the classification model and obtain more semantically expressive feature representation. The algorithm is tested on SemEval-2010 Task 8 English relation extraction dataset, and the F1 value of the final experiment can reach 0. 881.
2023-05-19
Li, Wei, Liao, Jie, Qian, Yuwen, Zhou, Xiangwei, Lin, Yan.  2022.  A Wireless Covert Communication System: Antenna Coding and Achievable Rate Analysis. ICC 2022 - IEEE International Conference on Communications. :438—443.
In covert communication systems, covert messages can be transmitted without being noticed by the monitors or adversaries. Therefore, the covert communication technology has emerged as a novel method for network authentication, copyright protection, and the evidence of cybercrimes. However, how to design the covert communication in the physical layer of wireless networks and how to improve the channel capacity for the covert communication systems are very challenging. In this paper, we propose a wireless covert communication system, where data streams from the antennas of the transmitter are coded according to a code book to transmit covert and public messages. We adopt a modulation scheme, named covert quadrature amplitude modulation (QAM), to modulate the messages, where the constellation of covert information bits deviates from its normal coordinates. Moreover, the covert receiver can detect the covert information bits according to the constellation departure. Simulation results show that proposed covert communication system can significantly improve the covert data rate and reduce the covert bit error rate, in comparison with the traditional covert communication systems.
2023-04-14
Hwang, Seunggyu, Lee, Hyein, Kim, Sooyoung.  2022.  Evaluation of physical-layer security schemes for space-time block coding under imperfect channel estimation. 2022 27th Asia Pacific Conference on Communications (APCC). :580–585.

With the advent of massive machine type of communications, security protection becomes more important than ever. Efforts have been made to impose security protection capability to physical-layer signal design, so called physical-layer security (PLS). The purpose of this paper is to evaluate the performance of PLS schemes for a multi-input-multi-output (MIMO) systems with space-time block coding (STBC) under imperfect channel estimation. Three PLS schemes for STBC schemes are modeled and their bit error rate (BER) performances are evaluated under various channel estimation error environments, and their performance characteristics are analyzed.

ISSN: 2163-0771

Salman, Hanadi, Naderi, Sanaz, Arslan, Hüseyin.  2022.  Channel-Dependent Code Allocation for Downlink MC-CDMA System Aided Physical Layer Security. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). :1–5.
Spreading codes are the core of the spread spectrum transmission. In this paper, a novel channel-dependent code allocation procedure for enhancing security in multi-carrier code division multiple access (MC-CDMA) system is proposed and investigated over frequency-selective fading. The objective of the proposed technique is to assign the codes to every subcarrier of active/legitimate receivers (Rxs) based on their channel frequency response (CFR). By that, we ensure security for legitimate Rxs against eavesdropping while preserving mutual confidentiality between the legitimate Rxs themselves. To do so, two assigning modes; fixed assigning mode (FAM) and adaptive assigning mode (AAM), are exploited. The effect of the channel estimation error and the number of legitimate Rxs on the bit error rate (BER) performance is studied. The presented simulations show that AAM provides better security with a complexity trade-off compared to FAM. While the latter is more robust against the imperfection of channel estimation.
ISSN: 2577-2465
2023-03-17
Alam, Md Shah, Hossain, Sarkar Marshia, Oluoch, Jared, Kim, Junghwan.  2022.  A Novel Secure Physical Layer Key Generation Method in Connected and Autonomous Vehicles (CAVs). 2022 IEEE Conference on Communications and Network Security (CNS). :1–6.
A novel secure physical layer key generation method for Connected and Autonomous Vehicles (CAVs) against an attacker is proposed under fading and Additive White Gaussian Noise (AWGN). In the proposed method, a random sequence key is added to the demodulated sequence to generate a unique pre-shared key (PSK) to enhance security. Extensive computer simulation results proved that an attacker cannot extract the same legitimate PSK generated by the received vehicle even if identical fading and AWGN parameters are used both for the legitimate vehicle and attacker.
2023-02-03
Ni, Xuming, Zheng, Jianxin, Guo, Yu, Jin, Xu, Li, Ling.  2022.  Predicting severity of software vulnerability based on BERT-CNN. 2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI). :711–715.
Software vulnerabilities threaten the security of computer system, and recently more and more loopholes have been discovered and disclosed. For the detected vulnerabilities, the relevant personnel will analyze the vulnerability characteristics, and combine the vulnerability scoring system to determine their severity level, so as to determine which vulnerabilities need to be dealt with first. In recent years, some characteristic description-based methods have been used to predict the severity level of vulnerability. However, the traditional text processing methods only grasp the superficial meaning of the text and ignore the important contextual information in the text. Therefore, this paper proposes an innovative method, called BERT-CNN, which combines the specific task layer of Bert with CNN to capture important contextual information in the text. First, we use Bert to process the vulnerability description and other information, including Access Gained, Attack Origin and Authentication Required, to generate the feature vectors. Then these feature vectors of vulnerabilities and their severity levels are input into a CNN network, and the parameters of the CNN are gotten. Next, the fine-tuned Bert and the trained CNN are used to predict the severity level of a vulnerability. The results show that our method outperforms the state-of-the-art method with 91.31% on F1-score.
2023-01-06
Sharma, Himanshu, Kumar, Neeraj, Tekchandani, Raj Kumar, Mohammad, Nazeeruddin.  2022.  Deep Learning enabled Channel Secrecy Codes for Physical Layer Security of UAVs in 5G and beyond Networks. ICC 2022 - IEEE International Conference on Communications. :1—6.

Unmanned Aerial Vehicles (UAVs) are drawing enormous attention in both commercial and military applications to facilitate dynamic wireless communications and deliver seamless connectivity due to their flexible deployment, inherent line-of-sight (LOS) air-to-ground (A2G) channels, and high mobility. These advantages, however, render UAV-enabled wireless communication systems susceptible to eavesdropping attempts. Hence, there is a strong need to protect the wireless channel through which most of the UAV-enabled applications share data with each other. There exist various error correction techniques such as Low Density Parity Check (LDPC), polar codes that provide safe and reliable data transmission by exploiting the physical layer but require high transmission power. Also, the security gap achieved by these error-correction techniques must be reduced to improve the security level. In this paper, we present deep learning (DL) enabled punctured LDPC codes to provide secure and reliable transmission of data for UAVs through the Additive White Gaussian Noise (AWGN) channel irrespective of the computational power and channel state information (CSI) of the Eavesdropper. Numerical result analysis shows that the proposed scheme reduces the Bit Error Rate (BER) at Bob effectively as compared to Eve and the Signal to Noise Ratio (SNR) per bit value of 3.5 dB is achieved at the maximum threshold value of BER. Also, the security gap is reduced by 47.22 % as compared to conventional LDPC codes.

2022-12-01
Starks, Brandon E., Robinson, Karsen, Sitaula, Binod, Chrysler, Andrew M..  2021.  Physical Layer Wireless Security Through the Rotation of Polarized Antennas. 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). :1483–1484.
A wireless communication system with rotating linearly polarized antennas is built and tested as a method for increasing physical layer security. Controlling the linear polarization angle from 0° to 180° yields bit error rates greater than 20% for 40° of rotation.
2022-11-18
Goldstein, Brunno F., Ferreira, Victor C., Srinivasan, Sudarshan, Das, Dipankar, Nery, Alexandre S., Kundu, Sandip, França, Felipe M. G..  2021.  A Lightweight Error-Resiliency Mechanism for Deep Neural Networks. 2021 22nd International Symposium on Quality Electronic Design (ISQED). :311–316.
In recent years, Deep Neural Networks (DNNs) have made inroads into a number of applications involving pattern recognition - from facial recognition to self-driving cars. Some of these applications, such as self-driving cars, have real-time requirements, where specialized DNN hardware accelerators help meet those requirements. Since DNN execution time is dominated by convolution, Multiply-and-Accumulate (MAC) units are at the heart of these accelerators. As hardware accelerators push the performance limits with strict power constraints, reliability is often compromised. In particular, power-constrained DNN accelerators are more vulnerable to transient and intermittent hardware faults due to particle hits, manufacturing variations, and fluctuations in power supply voltage and temperature. Methods such as hardware replication have been used to deal with these reliability problems in the past. Unfortunately, the duplication approach is untenable in a power constrained environment. This paper introduces a low-cost error-resiliency scheme that targets MAC units employed in conventional DNN accelerators. We evaluate the reliability improvements from the proposed architecture using a set of 6 CNNs over varying bit error rates (BER) and demonstrate that our proposed solution can achieve more than 99% of fault coverage with a 5-bits arithmetic code, complying with the ASIL-D level of ISO26262 standards with a negligible area and power overhead. Additionally, we evaluate the proposed detection mechanism coupled with a word masking correction scheme, demonstrating no loss of accuracy up to a BER of 10-2.
2022-09-20
Korenda, Ashwija Reddy, Afghah, Fatemeh, Razi, Abolfazl, Cambou, Bertrand, Begay, Taylor.  2021.  Fuzzy Key Generator Design using ReRAM-Based Physically Unclonable Functions. 2021 IEEE Physical Assurance and Inspection of Electronics (PAINE). :1—7.
Physical unclonable functions (PUFs) are used to create unique device identifiers from their inherent fabrication variability. Unstable readings and variation of the PUF response over time are key issues that limit the applicability of PUFs in real-world systems. In this project, we developed a fuzzy extractor (FE) to generate robust cryptographic keys from ReRAM-based PUFs. We tested the efficiency of the proposed FE using BCH and Polar error correction codes. We use ReRAM-based PUFs operating in pre-forming range to generate binary cryptographic keys at ultra-low power with an objective of tamper sensitivity. We investigate the performance of the proposed FE with real data using the reading of the resistance of pre-formed ReRAM cells under various noise conditions. The results show a bit error rate (BER) in the range of 10−5 for the Polar-codes based method when 10% of the ReRAM cell array is erroneous at Signal to Noise Ratio (SNR) of 20dB.This error rate is achieved by using helper data length of 512 bits for a 256 bit cryptographic key. Our method uses a 2:1 ratio for helper data and key, much lower than the majority of previously reported methods. This property makes our method more robust against helper data attacks.
2022-09-16
Kaur, Satwinder, Kuttan, Deepak B, Mittal, Nitin.  2021.  An Energy-saving Approach for Error control Codes in Wireless Sensor Networks. 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC). :313—316.
Wireless Sensor Networks (WSNs) have limited energy resource which requires authentic data transmission at a minimum cost. The major challenge is to deploy WSN with limited energy and lifetime of nodes while taking care of secure data communication. The transmission of data from the wireless channels may cause many losses such as fading, noise, bit error rate increases as well as deplete the energy resource from the nodes. To reduce the adverse effects of losses and to save power usage, error control coding (ECC) techniques are widely used and it also brings coding gain. Since WSN have limited energy resource so the selection of ECC is very difficult as both power consumption, as well as BER, has also taken into consideration. This research paper reviews different types of models, their applications, limitations of the sensor networks, and what are different types of future works going to overcome the limitations.
Silvério, Tiago, Figueiredo, Gonçalo, André, Paulo S., Ferreira, Rute A.S..  2021.  Privacy Increase in VLC System Based on Hyperchaotic Map. 2021 Telecoms Conference (Conf℡E). :1—4.
Visible light communications (VLC) have been the focus of many recent investigations due to its potential for transmitting data at a higher bitrate than conventional communication systems. Alongside the advantages of being energy efficient through the use of LEDs (Light Emitting Diodes), it is imperative that these systems also take in consideration privacy and security measures available. This work highlights the technical aspects of a typical 16-QAM (Quadrature Amplitude Modulation) VLC system incorporating an enhanced privacy feature using an hyperchaotic map to scramble the symbols. The results obtained in this study showed a low dispersion symbol constellation while communicating at 100 Baud and with a 1 m link. Using the measured EVM (Error Vector Magnitude) of the constellation, the BER (Bit Error Rate) of this system was estimated to be bellow 10−12 which is lower than the threshold limit of 3.8.10−3 that corresponds to the 7% hard-decision forward error correction (HD- FEC) for optimal transmission, showing that this technique can be implemented with higher bitrates and with a higher modulation index.
2022-08-12
Maruyama, Yoshihiro.  2021.  Learning, Development, and Emergence of Compositionality in Natural Language Processing. 2021 IEEE International Conference on Development and Learning (ICDL). :1–7.
There are two paradigms in language processing, as characterised by symbolic compositional and statistical distributional modelling, which may be regarded as based upon the principles of compositionality (or symbolic recursion) and of contextuality (or the distributional hypothesis), respectively. Starting with philosophy of language as in Frege and Wittgenstein, we elucidate the nature of language and language processing from interdisciplinary perspectives across different fields of science. At the same time, we shed new light on conceptual issues in language processing on the basis of recent advances in Transformer-based models such as BERT and GPT-3. We link linguistic cognition with mathematical cognition through these discussions, explicating symbol grounding/emergence problems shared by both of them. We also discuss whether animal cognition can develop recursive compositional information processing.
2022-07-15
Wang, Yan, Allouache, Yacine, Joubert, Christian.  2021.  A Staffing Recommender System based on Domain-Specific Knowledge Graph. 2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS). :1—6.
In the economics environment, Job Matching is always a challenge involving the evolution of knowledge and skills. A good matching of skills and jobs can stimulate the growth of economics. Recommender System (RecSys), as one kind of Job Matching, can help the candidates predict the future job relevant to their preferences. However, RecSys still has the problem of cold start and data sparsity. The content-based filtering in RecSys needs the adaptive data for the specific staffing tasks of Bidirectional Encoder Representations from Transformers (BERT). In this paper, we propose a job RecSys based on skills and locations using a domain-specific Knowledge Graph (KG). This system has three parts: a pipeline of Named Entity Recognition (NER) and Relation Extraction (RE) using BERT; a standardization system for pre-processing, semantic enrichment and semantic similarity measurement; a domain-specific Knowledge Graph (KG). Two different relations in the KG are computed by cosine similarity and Term Frequency-Inverse Document Frequency (TF-IDF) respectively. The raw data used in the staffing RecSys include 3000 descriptions of job offers from Indeed, 126 Curriculum Vitae (CV) in English from Kaggle and 106 CV in French from Linx of Capgemini Engineering. The staffing RecSys is integrated under an architecture of Microservices. The autonomy and effectiveness of the staffing RecSys are verified through the experiment using Discounted Cumulative Gain (DCG). Finally, we propose several potential research directions for this research.
2022-07-01
Cribbs, Michael, Romero, Ric, Ha, Tri.  2021.  Modulation-Based Physical Layer Security via Gray Code Hopping. 2021 IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR 2021). :1–6.
A physical layer security (PLS) technique called Gray Code Hopping (GCH) is presented offering simplistic implementation and no bit error rate (BER) performance degradation over the main channel. A synchronized transmitter and receiver "hop" to an alternative binary reflected Gray code (BRGC) mapping of bits to symbols between each consecutive modulation symbol. Monte Carlo simulations show improved BER performance over a similar technique from the literature. Simulations also confirm compatibility of GCH with either hard or soft decision decoding methods. Simplicity of GCH allows for ready implementation in adaptive 5th Generation New Radio (5G NR) modulation coding schemes.
Pan, Conglin, Chen, Si, Wu, Wei, Qian, Jiachuan, Wang, Lijun.  2021.  Research on Space-Time Block Code Technology in MIMO System. 2021 7th International Conference on Computer and Communications (ICCC). :1875—1879.
MIMO technology has been widely used in the telecommunication systems nowadays, and the space-time coding is a key part of MIMO technology. A good coding scheme can exploit the spatial diversity to correct the error which is generated in transmission, and increase the normalized transfer rate with low decoding complexity. On the Basis of the research on different Space-Time Block Codes, this essay proposes a new STBC, Diagonal Block Orthogonal Space-Time Block Code. Then we will compare it with other STBCs in the performance of bit error rate, transfer rate, decoding complexity and peek-to-average power ratio, the final result will prove the superiority of DBOAST.
2022-05-19
Qing-chao, Ni, Cong-jue, Yin, Dong-hua, Zhao.  2021.  Research on Small Sample Text Classification Based on Attribute Extraction and Data Augmentation. 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). :53–57.
With the development of deep learning and the progress of natural language processing technology, as well as the continuous disclosure of judicial data such as judicial documents, legal intelligence has gradually become a research hot spot. The crime classification task is an important branch of text classification, which can help people related to the law to improve their work efficiency. However, in the actual research, the sample data is small and the distribution of crime categories is not balanced. To solve these two problems, BERT was used as the encoder to solve the problem of small data volume, and attribute extraction network was added to solve the problem of unbalanced distribution. Finally, the accuracy of 90.35% on small sample data set could be achieved, and F1 value was 67.62, which was close to the best model performance under sufficient data. Finally, a text enhancement method based on back-translation technology is proposed. Different models are used to conduct experiments. Finally, it is found that LSTM model is improved to some extent, but BERT is not improved to some extent.
Zhang, Cheng, Yamana, Hayato.  2021.  Improving Text Classification Using Knowledge in Labels. 2021 IEEE 6th International Conference on Big Data Analytics (ICBDA). :193–197.
Various algorithms and models have been proposed to address text classification tasks; however, they rarely consider incorporating the additional knowledge hidden in class labels. We argue that hidden information in class labels leads to better classification accuracy. In this study, instead of encoding the labels into numerical values, we incorporated the knowledge in the labels into the original model without changing the model architecture. We combined the output of an original classification model with the relatedness calculated based on the embeddings of a sequence and a keyword set. A keyword set is a word set to represent knowledge in the labels. Usually, it is generated from the classes while it could also be customized by the users. The experimental results show that our proposed method achieved statistically significant improvements in text classification tasks. The source code and experimental details of this study can be found on Github11https://github.com/HeroadZ/KiL.
2022-03-10
Ozan, Şükrü, Taşar, D. Emre.  2021.  Auto-tagging of Short Conversational Sentences using Natural Language Processing Methods. 2021 29th Signal Processing and Communications Applications Conference (SIU). :1—4.
In this study, we aim to find a method to autotag sentences specific to a domain. Our training data comprises short conversational sentences extracted from chat conversations between company's customer representatives and web site visitors. We manually tagged approximately 14 thousand visitor inputs into ten basic categories, which will later be used in a transformer-based language model with attention mechanisms for the ultimate goal of developing a chatbot application that can produce meaningful dialogue.We considered three different stateof- the-art models and reported their auto-tagging capabilities. We achieved the best performance with the bidirectional encoder representation from transformers (BERT) model. Implementation of the models used in these experiments can be cloned from our GitHub repository and tested for similar auto-tagging problems without much effort.
2022-03-01
Triphena, Jeba, Thirumavalavan, Vetrivel Chelian, Jayaraman, Thiruvengadam S.  2021.  BER Analysis of RIS Assisted Bidirectional Relay System with Physical Layer Network Coding. 2021 National Conference on Communications (NCC). :1–6.
Reconfigurable Intelligent Surface (RIS) is one of the latest technologies in bringing a certain amount of control to the rather unpredictable and uncontrollable wireless channel. In this paper, RIS is introduced in a bidirectional system with two source nodes and a Decode and Forward (DF) relay node. It is assumed that there is no direct path between the source nodes. The relay node receives information from source nodes simultaneously. The Physical Layer Network Coding (PLNC) is applied at the relay node to assist in the exchange of information between the source nodes. Analytical expressions are derived for the average probability of errors at the source nodes and relay node of the proposed RIS-assisted bidirectional relay system. The Bit Error Rate (BER) performance is analyzed using both simulation and analytical forms. It is observed that RIS-assisted PLNC based bidirectional relay system performs better than the conventional PLNC based bidirectional system.
2021-11-29
Wei, Rongyu, Nie, Min, Yang, Guang.  2020.  The Strategy of Beating the Intermediate Basis Attack in Quantum Communication Networks. 2020 International Conference on Computer Engineering and Application (ICCEA). :57–61.
Quantum communication network is a new type of secure communication technique and has drawn a lot of attentions in recent years, it has absolute safety in theory. However, quantum communication networks can still be attacked in different ways, among which the intermediate basis attack based on intercept-resend is a typical eavesdropping strategy. With this method, The probability of the eavesdropper correctly guessing the sender's code value can reach up to 0.854, resulting in the quantum bit error rate (QBER) of 0.25. To improve the security performance of quantum communication networks, we propose a strategy based on attack basis detection for beating the intermediate basis attack named “WN19”. In WN19, we can reduce QBER and the probability of the eavesdropper obtaining information correctly by adjusting the initial state of the quantum state of the sender according to the result of attack basis detection. The simulation results show that if the polarization angle \$þeta\$ of the attack basis is \$\textbackslashtextbackslashpi/8\$, the QBER reduces from 0.25 to 0.1367 and the probability of eavesdropper correctly obtaining information decreases from 0.854 to 0.5811. It effectively improves the security of quantum cryptography under intermediate basis attack and provides a theoretical basis for the healthy development of quantum communication system.
2021-06-01
Ming, Kun.  2020.  Chinese Coreference Resolution via Bidirectional LSTMs using Word and Token Level Representations. 2020 16th International Conference on Computational Intelligence and Security (CIS). :73–76.
Coreference resolution is an important task in the field of natural language processing. Most existing methods usually utilize word-level representations, ignoring massive information from the texts. To address this issue, we investigate how to improve Chinese coreference resolution by using span-level semantic representations. Specifically, we propose a model which acquires word and character representations through pre-trained Skip-Gram embeddings and pre-trained BERT, then explicitly leverages span-level information by performing bidirectional LSTMs among above representations. Experiments on CoNLL-2012 shared task have demonstrated that the proposed model achieves 62.95% F1-score, outperforming our baseline methods.
2021-05-18
Iorga, Denis, Corlătescu, Dragos, Grigorescu, Octavian, Săndescu, Cristian, Dascălu, Mihai, Rughiniş, Razvan.  2020.  Early Detection of Vulnerabilities from News Websites using Machine Learning Models. 2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet). :1–6.
The drawbacks of traditional methods of cybernetic vulnerability detection relate to the required time to identify new threats, to register them in the Common Vulnerabilities and Exposures (CVE) records, and to score them with the Common Vulnerabilities Scoring System (CVSS). These problems can be mitigated by early vulnerability detection systems relying on social media and open-source data. This paper presents a model that aims to identify emerging cybernetic vulnerabilities in cybersecurity news articles, as part of a system for automatic detection of early cybernetic threats using Open Source Intelligence (OSINT). Three machine learning models were trained on a novel dataset of 1000 labeled news articles to create a strong baseline for classifying cybersecurity articles as relevant (i.e., introducing new security threats), or irrelevant: Support Vector Machines, a Multinomial Naïve Bayes classifier, and a finetuned BERT model. The BERT model obtained the best performance with a mean accuracy of 88.45% on the test dataset. Our experiments support the conclusion that Natural Language Processing (NLP) models are an appropriate choice for early vulnerability detection systems in order to extract relevant information from cybersecurity news articles.