Visible to the public Biblio

Filters: Keyword is location based services  [Clear All Filters]
2023-07-21
Almutairi, Mishaal M., Apostolopoulou, Dimitra, Halikias, George, Abi Sen, Adnan Ahmed, Yamin, Mohammad.  2022.  Enhancing Privacy and Security in Crowds using Fog Computing. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :57—62.
Thousands of crowded events take place every year. Often, management does not properly implement and manage privacy and security of data of the participants and personnel of the events. Crowds are also prone to significant security issues and become vulnerable to terrorist attacks. The aim of this paper is to propose a privacy and security framework for large, crowded events like the Hajj, Kumbh, Arba'een, and many sporting events and musical concerts. The proposed framework uses the latest technologies including Internet of Things, and Fog computing, especially in the Location based Services environments. The proposed framework can also be adapted for many other scenarios and situations.
2021-02-22
Lei, X., Tu, G.-H., Liu, A. X., Xie, T..  2020.  Fast and Secure kNN Query Processing in Cloud Computing. 2020 IEEE Conference on Communications and Network Security (CNS). :1–9.
Advances in sensing and tracking technology lead to the proliferation of location-based services. Location service providers (LSPs) often resort to commercial public clouds to store the tremendous geospatial data and process location-based queries from data users. To protect the privacy of LSP's geospatial data and data user's query location against the untrusted cloud, they are required to be encrypted before sending to the cloud. Nevertheless, it is not easy to design a fast and secure location-based query processing scheme over the encrypted data. In this paper, we propose a Fast and Secure kNN (FSkNN) scheme to support secure k nearest neighbor (k NN) search in cloud computing. We reveal the inherent connection between an Sk NN protocol and a secure range query protocol and further describe how to construct FSkNN based on a secure range query protocol. FSkNN leverages a customized accuracy-assured strategy to ensure the result accuracy and adopts a data structure named random Bloom filter (RBF) to build a secure index for efficiently searching. We formally prove the security of FSkNN under the random oracle model. Our evaluation results show that FSkNN is highly practical.
2020-12-28
Liu, H., Di, W..  2020.  Application of Differential Privacy in Location Trajectory Big Data. 2020 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :569—573.

With the development of mobile internet technology, GPS technology and social software have been widely used in people's lives. The problem of big data privacy protection related to location trajectory is becoming more and more serious. The traditional location trajectory privacy protection method requires certain background knowledge and it is difficult to adapt to massive mass. Privacy protection of data. differential privacy protection technology protects privacy by attacking data by randomly perturbing raw data. The method used in this paper is to first sample the position trajectory, form the irregular polygons of the high-frequency access points in the sampling points and position data, calculate the center of gravity of the polygon, and then use the differential privacy protection algorithm to add noise to the center of gravity of the polygon to form a new one. The center of gravity, and the new center of gravity are connected to form a new trajectory. The purpose of protecting the position trajectory is well achieved. It is proved that the differential privacy protection algorithm can effectively protect the position trajectory by adding noise.

2020-09-28
Butun, Ismail, Österberg, Patrik, Gidlund, Mikael.  2019.  Preserving Location Privacy in Cyber-Physical Systems. 2019 IEEE Conference on Communications and Network Security (CNS). :1–6.
The trending technological research platform is Internet of Things (IoT)and most probably it will stay that way for a while. One of the main application areas of IoT is Cyber-Physical Systems (CPSs), in which IoT devices can be leveraged as actuators and sensors in accordance with the system needs. The public acceptance and adoption of CPS services and applications will create a huge amount of privacy issues related to the processing, storage and disclosure of the user location information. As a remedy, our paper proposes a methodology to provide location privacy for the users of CPSs. Our proposal takes advantage of concepts such as mix-zone, context-awareness, and location-obfuscation. According to our best knowledge, the proposed methodology is the first privacy-preserving location service for CPSs that offers adaptable privacy levels related to the current context of the user.
Gao, Meng-Qi, Han, Jian-Min, Lu, Jian-Feng, Peng, Hao, Hu, Zhao-Long.  2018.  Incentive Mechanism for User Collaboration on Trajectory Privacy Preservation. 2018 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1976–1981.
Collaborative trajectory privacy preservation (CTPP) scheme is an effective method for continuous queries. However, collaborating with other users need pay some cost. Therefore, some rational and selfish users will not choose collaboration, which will result in users' privacy disclosing. To solve the problem, this paper proposes a collaboration incentive mechanism by rewarding collaborative users and punishing non-collaborative users. The paper models the interactions of users participating in CTPP as a repeated game and analysis the utility of participated users. The analytical results show that CTPP with the proposed incentive mechanism can maximize user's payoffs. Experiments show that the proposed mechanism can effectively encourage users' collaboration behavior and effectively preserve the trajectory privacy for continuous query users.
2020-08-13
Yang, Xudong, Gao, Ling, Wang, Hai, Zheng, Jie, Guo, Hongbo.  2019.  A Semantic k-Anonymity Privacy Protection Method for Publishing Sparse Location Data. 2019 Seventh International Conference on Advanced Cloud and Big Data (CBD). :216—222.

With the development of location technology, location-based services greatly facilitate people's life . However, due to the location information contains a large amount of user sensitive informations, the servicer in location-based services published location data also be subject to the risk of privacy disclosure. In particular, it is more easy to lead to privacy leaks without considering the attacker's semantic background knowledge while the publish sparse location data. So, we proposed semantic k-anonymity privacy protection method to against above problem in this paper. In this method, we first proposed multi-user compressing sensing method to reconstruct the missing location data . To balance the availability and privacy requirment of anonymity set, We use semantic translation and multi-view fusion to selected non-sensitive data to join anonymous set. Experiment results on two real world datasets demonstrate that our solution improve the quality of privacy protection to against semantic attacks.

Zhou, Kexin, Wang, Jian.  2019.  Trajectory Protection Scheme Based on Fog Computing and K-anonymity in IoT. 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). :1—6.
With the development of cloud computing technology in the Internet of Things (IoT), the trajectory privacy in location-based services (LBSs) has attracted much attention. Most of the existing work adopts point-to-point and centralized models, which will bring a heavy burden to the user and cause performance bottlenecks. Moreover, previous schemes did not consider both online and offline trajectory protection and ignored some hidden background information. Therefore, in this paper, we design a trajectory protection scheme based on fog computing and k-anonymity for real-time trajectory privacy protection in continuous queries and offline trajectory data protection in trajectory publication. Fog computing provides the user with local storage and mobility to ensure physical control, and k-anonymity constructs the cloaking region for each snapshot in terms of time-dependent query probability and transition probability. In this way, two k-anonymity-based dummy generation algorithms are proposed, which achieve the maximum entropy of online and offline trajectory protection. Security analysis and simulation results indicate that our scheme can realize trajectory protection effectively and efficiently.
2020-06-22
Feng, Tianyi, Wong, Wai-Choong, Sun, Sumei, Zhao, Yonghao, Zhang, Zhixiang.  2019.  Location Privacy Preservation and Location-based Service Quality Tradeoff Framework Based on Differential Privacy. 2019 16th Workshop on Positioning, Navigation and Communications (WPNC). :1–6.
With the widespread use of location-based services and the development of localization systems, user's locations and even sensitive information can be easily accessed by some untrusted entities, which means privacy concerns should be taken seriously. In this paper, we propose a differential privacy framework to preserve users' location privacy and provide location-based services. We propose the metrics of location privacy, service quality and differential privacy to introduce a location privacy preserving mechanism, which can help users find the tradeoff or optimal strategy between location privacy and service quality. In addition, we design an adversary model to infer users' true locations, which can be used by application service providers to improve service quality. Finally, we present simulation results and analyze the performance of our proposed system.
2020-04-20
Xiang, Wei.  2019.  An Efficient Location Privacy Preserving Model based on Geohash. 2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC). :1–5.
With the rapid development of location-aware mobile devices, location-based services have been widely used. When LBS (Location Based Services) bringing great convenience and profits, it also brings great hidden trouble, among which user privacy security is one of them. The paper builds a LBS privacy protection model and develops algorithm depend on the technology of one dimensional coding of Geohash geographic information. The results of experiments and data measurements show that the model the model has reached k-anonymity effect and has good performance in avoiding attacking from the leaked information in a continuous query with the user's background knowledge. It also has a preferable performance in time cost of system process.
To, Hien, Shahabi, Cyrus, Xiong, Li.  2018.  Privacy-Preserving Online Task Assignment in Spatial Crowdsourcing with Untrusted Server. 2018 IEEE 34th International Conference on Data Engineering (ICDE). :833–844.
With spatial crowdsourcing (SC), requesters outsource their spatiotemporal tasks (tasks associated with location and time) to a set of workers, who will perform the tasks by physically traveling to the tasks' locations. However, current solutions require the locations of the workers and/or the tasks to be disclosed to untrusted parties (SC server) for effective assignments of tasks to workers. In this paper we propose a framework for assigning tasks to workers in an online manner without compromising the location privacy of workers and tasks. We perturb the locations of both tasks and workers based on geo-indistinguishability and then devise techniques to quantify the probability of reachability between a task and a worker, given their perturbed locations. We investigate both analytical and empirical models for quantifying the worker-task pair reachability and propose task assignment strategies that strike a balance among various metrics such as the number of completed tasks, worker travel distance and system overhead. Extensive experiments on real-world datasets show that our proposed techniques result in minimal disclosure of task locations and no disclosure of worker locations without significantly sacrificing the total number of assigned tasks.
To, Hien, Shahabi, Cyrus, Xiong, Li.  2018.  Privacy-Preserving Online Task Assignment in Spatial Crowdsourcing with Untrusted Server. 2018 IEEE 34th International Conference on Data Engineering (ICDE). :833–844.
With spatial crowdsourcing (SC), requesters outsource their spatiotemporal tasks (tasks associated with location and time) to a set of workers, who will perform the tasks by physically traveling to the tasks' locations. However, current solutions require the locations of the workers and/or the tasks to be disclosed to untrusted parties (SC server) for effective assignments of tasks to workers. In this paper we propose a framework for assigning tasks to workers in an online manner without compromising the location privacy of workers and tasks. We perturb the locations of both tasks and workers based on geo-indistinguishability and then devise techniques to quantify the probability of reachability between a task and a worker, given their perturbed locations. We investigate both analytical and empirical models for quantifying the worker-task pair reachability and propose task assignment strategies that strike a balance among various metrics such as the number of completed tasks, worker travel distance and system overhead. Extensive experiments on real-world datasets show that our proposed techniques result in minimal disclosure of task locations and no disclosure of worker locations without significantly sacrificing the total number of assigned tasks.
Raber, Frederic, Krüger, Antonio.  2018.  Deriving Privacy Settings for Location Sharing: Are Context Factors Always the Best Choice? 2018 IEEE Symposium on Privacy-Aware Computing (PAC). :86–94.
Research has observed context factors like occasion and time as influential factors for predicting whether or not to share a location with online friends. In other domains like social networks, personality was also found to play an important role. Furthermore, users are seeking a fine-grained disclosement policy that also allows them to display an obfuscated location, like the center of the current city, to some of their friends. In this paper, we observe which context factors and personality measures can be used to predict the correct privacy level out of seven privacy levels, which include obfuscation levels like center of the street or current city. Our results show that a prediction is possible with a precision 20% better than a constant value. We will give design indications to determine which context factors should be recorded, and how much the precision can be increased if personality and privacy measures are recorded using either a questionnaire or automated text analysis.
Raber, Frederic, Krüger, Antonio.  2018.  Deriving Privacy Settings for Location Sharing: Are Context Factors Always the Best Choice? 2018 IEEE Symposium on Privacy-Aware Computing (PAC). :86–94.
Research has observed context factors like occasion and time as influential factors for predicting whether or not to share a location with online friends. In other domains like social networks, personality was also found to play an important role. Furthermore, users are seeking a fine-grained disclosement policy that also allows them to display an obfuscated location, like the center of the current city, to some of their friends. In this paper, we observe which context factors and personality measures can be used to predict the correct privacy level out of seven privacy levels, which include obfuscation levels like center of the street or current city. Our results show that a prediction is possible with a precision 20% better than a constant value. We will give design indications to determine which context factors should be recorded, and how much the precision can be increased if personality and privacy measures are recorded using either a questionnaire or automated text analysis.
2020-04-13
Ruehrup, Stefan, Krenn, Stephan.  2019.  Towards Privacy in Geographic Message Dissemination for Connected Vehicles. 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE). :1–6.
With geographic message dissemination, connected vehicles can be served with traffic information in their proximity, thereby positively impacting road safety, traffic management, or routing. Since such messages are typically relevant in a small geographic area, servers only distribute messages to affected vehicles for efficiency reasons. One main challenge is to maintain scalability of the server infrastructure when collecting location updates from vehicles and determining the relevant group of vehicles when messages are distributed to a geographic relevance area, while at the same time respecting the individual user's privacy in accordance with legal regulations. In this paper, we present a framework for geographic message dissemination following the privacy-by-design and privacy-by-default principles, without having to accept efficiency drawbacks compared to conventional server-client based approaches.
2020-02-18
Zhang, Detian, Liu, An, Jin, Gaoming, Li, Qing.  2019.  Edge-Based Shortest Path Caching for Location-Based Services. 2019 IEEE International Conference on Web Services (ICWS). :320–327.

Shortest path queries on road networks are widely used in location-based services (LBS), e.g., finding the shortest route from my home to the airport through Google Maps. However, when there are a large number of path queries arrived concurrently or in a short while, an LBS provider (e.g., Google Maps) has to endure a high workload and then may lead to a long response time to users. Therefore, path caching services are utilized to accelerate large-scale path query processing, which try to store the historical path results and reuse them to answer the coming queries directly. However, most of existing path caches are organized based on nodes of paths; hence, the underlying road network topology is still needed to answer a path query when its querying origin or destination lies on edges. To overcome this limitation, we propose an edge-based shortest path cache in this paper that can efficiently handle queries without needing any road information, which is much more practical in the real world. We achieve this by designing a totally new edge-based path cache structure, an efficient R-tree-based cache lookup algorithm, and a greedy-based cache construction algorithm. Extensive experiments on a real road network and real point-of-interest datasets are conducted, and the results show the efficiency, scalability, and applicability of our proposed caching techniques.

2018-12-03
Catania, E., Corte, A. La.  2018.  Location Privacy in Virtual Cell-Equipped Ultra-Dense Networks. 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–4.

Ultra-dense Networks are attracting significant interest due to their ability to provide the next generation 5G cellular networks with a high data rate, low delay, and seamless coverage. Several factors, such as interferences, energy constraints, and backhaul bottlenecks may limit wireless networks densification. In this paper, we study the effect of mobile node densification, access node densification, and their aggregation into virtual entities, referred to as virtual cells, on location privacy. Simulations show that the number of tracked mobile nodes might be statistically reduced up to 10 percent by implementing virtual cells. Moreover, experiments highlight that success of tracking attacks has an inverse relationship to the number of moving nodes. The present paper is a preliminary attempt to analyse the effectiveness of cell virtualization to mitigate location privacy threats in ultra-dense networks.

2018-04-02
Wu, D., Zhang, Y., Liu, Y..  2017.  Dummy Location Selection Scheme for K-Anonymity in Location Based Services. 2017 IEEE Trustcom/BigDataSE/ICESS. :441–448.

Location-Based Service (LBS) becomes increasingly important for our daily life. However, the localization information in the air is vulnerable to various attacks, which result in serious privacy concerns. To overcome this problem, we formulate a multi-objective optimization problem with considering both the query probability and the practical dummy location region. A low complexity dummy location selection scheme is proposed. We first find several candidate dummy locations with similar query probabilities. Among these selected candidates, a cloaking area based algorithm is then offered to find K - 1 dummy locations to achieve K-anonymity. The intersected area between two dummy locations is also derived to assist to determine the total cloaking area. Security analysis verifies the effectiveness of our scheme against the passive and active adversaries. Compared with other methods, simulation results show that the proposed dummy location scheme can improve the privacy level and enlarge the cloaking area simultaneously.

2015-05-04
Novak, E., Qun Li.  2014.  Near-pri: Private, proximity based location sharing. INFOCOM, 2014 Proceedings IEEE. :37-45.

As the ubiquity of smartphones increases we see an increase in the popularity of location based services. Specifically, online social networks provide services such as alerting the user of friend co-location, and finding a user's k nearest neighbors. Location information is sensitive, which makes privacy a strong concern for location based systems like these. We have built one such service that allows two parties to share location information privately and securely. Our system allows every user to maintain and enforce their own policy. When one party, (Alice), queries the location of another party, (Bob), our system uses homomorphic encryption to test if Alice is within Bob's policy. If she is, Bob's location is shared with Alice only. If she is not, no user location information is shared with anyone. Due to the importance and sensitivity of location information, and the easily deployable design of our system, we offer a useful, practical, and important system to users. Our main contribution is a flexible, practical protocol for private proximity testing, a useful and efficient technique for representing location values, and a working implementation of the system we design in this paper. It is implemented as an Android application with the Facebook online social network used for communication between users.