Visible to the public Biblio

Filters: Keyword is Satellites  [Clear All Filters]
2023-07-31
Islamy, Chaidir Chalaf, Ahmad, Tohari, Ijtihadie, Royyana Muslim.  2022.  Secret Image Sharing and Steganography based on Fuzzy Logic and Prediction Error. 2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT). :137—142.
Transmitting data through the internet may have severe security risks due to illegal access done by attackers. Some methods have been introduced to overcome this issue, such as cryptography and steganography. Nevertheless, some problems still arise, such as the quality of the stego data. Specifically, it happens if the stego is shared with some users. In this research, a shared-secret mechanism is combined with steganography. For this purpose, the fuzzy logic edge detection and Prediction Error (PE) methods are utilized to hide private data. The secret sharing process is carried out after data embedding in the cover image. This sharing mechanism is performed on image pixels that have been converted to PE values. Various Peak Signal to Noise Ratio (PSNR) values are obtained from the experiment. It is found that the number of participants and the threshold do not significantly affect the image quality of the shares.
2023-07-21
Zhou, Haosu, Lu, Wenbin, Shi, Yipeng, Liu, Zhenfu, Liu, Liu, Dong, Ningfei.  2022.  Constant False Alarm Rate Frame Detection Strategy for Terrestrial ASM/VDE Signals Received by Satellite. 2022 IEEE 5th International Conference on Electronics and Communication Engineering (ICECE). :29—33.
Frame detection is an important part of the reconnaissance satellite receiver to identify the terrestrial application specific messages (ASM) / VHF data exchange (VDE) signal, and has been challenged by Doppler shift and message collision. A constant false alarm rate (CFAR) frame detection strategy insensitive to Doppler shift has been proposed in this paper. Based on the double Barker sequence, a periodical sequence has been constructed, and differential operations have been adopted to eliminate the Doppler shift. Moreover, amplitude normalization is helpful for suppressing the interference introduced by message collision. Simulations prove that the proposed CFAR frame detection strategy is very attractive for the reconnaissance satellite to identify the terrestrial ASM/VDE signal.
2023-07-14
Rui, Li, Liu, Jun, Lu, Miaoxia.  2022.  Security Authentication Scheme for Low Earth Orbit Satellites Based on Spatial Channel Characteristics. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :396–400.
Security authentication can effectively solve the problem of access to Low Earth Orbit (LEO) satellites. However, the existing solutions still harbor some problems in the computational complexity of satellite authentication, flexible networking, resistance to brute force attacks and other aspects. So, a security authentication scheme for LEO satellites that integrates spatial channel characteristics is designed within the software defined network architecture. In this scheme, the spatial channel characteristics are introduced to the subsequent lightweight encryption algorithm to achieve effective defense against brute force attacks. According to security analysis and simulation results, the scheme can effectively reduce the computational overhead while protecting against replay attacks, brute force attacks, DOS attacks, and other known attacks.
2023-07-12
Li, Fenghua, Chen, Cao, Guo, Yunchuan, Fang, Liang, Guo, Chao, Li, Zifu.  2022.  Efficiently Constructing Topology of Dynamic Networks. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :44—51.
Accurately constructing dynamic network topology is one of the core tasks to provide on-demand security services to the ubiquitous network. Existing schemes cannot accurately construct dynamic network topologies in time. In this paper, we propose a novel scheme to construct the ubiquitous network topology. Firstly, ubiquitous network nodes are divided into three categories: terminal node, sink node, and control node. On this basis, we propose two operation primitives (i.e., addition and subtraction) and three atomic operations (i.e., intersection, union, and fusion), and design a series of algorithms to describe the network change and construct the network topology. We further use our scheme to depict the specific time-varying network topologies, including Satellite Internet and Internet of things. It demonstrates that their communication and security protection modes can be efficiently and accurately constructed on our scheme. The simulation and theoretical analysis also prove that the efficiency of our scheme, and effectively support the orchestration of protection capabilities.
Maity, Ilora, Vu, Thang X., Chatzinotas, Symeon, Minardi, Mario.  2022.  D-ViNE: Dynamic Virtual Network Embedding in Non-Terrestrial Networks. 2022 IEEE Wireless Communications and Networking Conference (WCNC). :166—171.
In this paper, we address the virtual network embedding (VNE) problem in non-terrestrial networks (NTNs) enabling dynamic changes in the virtual network function (VNF) deployment to maximize the service acceptance rate and service revenue. NTNs such as satellite networks involve highly dynamic topology and limited resources in terms of rate and power. VNE in NTNs is a challenge because a static strategy under-performs when new service requests arrive or the network topology changes unexpectedly due to failures or other events. Existing solutions do not consider the power constraint of satellites and rate limitation of inter-satellite links (ISLs) which are essential parameters for dynamic adjustment of existing VNE strategy in NTNs. In this work, we propose a dynamic VNE algorithm that selects a suitable VNE strategy for new and existing services considering the time-varying network topology. The proposed scheme, D-ViNE, increases the service acceptance ratio by 8.51% compared to the benchmark scheme TS-MAPSCH.
2023-05-19
Dazhi, Michael N., Al-Hraishawi, Hayder, Shankar, Mysore R Bhavani, Chatzinotas, Symeon.  2022.  Uplink Capacity Optimization for High Throughput Satellites using SDN and Multi-Orbital Dual Connectivity. 2022 IEEE International Conference on Communications Workshops (ICC Workshops). :544—549.
Dual Connectivity is a key approach to achieving optimization of throughput and latency in heterogeneous networks. Originally a technique introduced by the 3rd Generation Partnership Project (3GPP) for terrestrial communications, it is not been widely explored in satellite systems. In this paper, Dual Connectivity is implemented in a multi-orbital satellite network, where a network model is developed by employing the diversity gains from Dual Connectivity and Carrier Aggregation for the enhancement of satellite uplink capacity. An introduction of software defined network controller is performed at the network layer coupled with a carefully designed hybrid resource allocation algorithm which is implemented strategically. The algorithm performs optimum dynamic flow control and traffic steering by considering the availability of resources and the channel propagation information of the orbital links to arrive at a resource allocation pattern suitable in enhancing uplink system performance. Simulation results are shown to evaluate the achievable gains in throughput and latency; in addition we provide useful insight in the design of multi-orbital satellite networks with implementable scheduler design.
2023-04-14
Debnath, Sristi, Kar, Nirmalya.  2022.  An Approach Towards Data Security Based on DCT and Chaotic Map. 2022 2nd Asian Conference on Innovation in Technology (ASIANCON). :1–5.
Currently, the rapid development of digital communication and multimedia has made security an increasingly prominent issue of communicating, storing, and transmitting digital data such as images, audio, and video. Encryption techniques such as chaotic map based encryption can ensure high levels of security of data and have been used in many fields including medical science, military, and geographic satellite imagery. As a result, ensuring image data confidentiality, integrity, security, privacy, and authenticity while transferring and storing images over an unsecured network like the internet has become a high concern. There have been many encryption technologies proposed in recent years. This paper begins with a summary of cryptography and image encryption basics, followed by a discussion of different kinds of chaotic image encryption techniques and a literature review for each form of encryption. Finally, by examining the behaviour of numerous existing chaotic based image encryption algorithms, this paper hopes to build new chaotic based image encryption strategies in the future.
2023-02-17
Radis, Alexandre Henrique, Costa Gondim, João José, Café, Daniel Chaves.  2022.  Proposed Security Measures for Code Injection for CubeSats. 2022 Workshop on Communication Networks and Power Systems (WCNPS). :1–7.
Sometimes we have the need to inject new services in an operational satellite, but as the injection of new codes in equipment that has communication link is a critical process due to the possibility of injection of broke or malicious codes, this document proposes a protocol for the safe injection of code in satellite microcontrollers of the CubeSat’ type. This protocol is based on the use of HMAC with SHA-3 to guarantee integrity and authenticity and is enhanced by the same security measures to mitigate communication link problems and satellite attacks, such as the guarantee of delivery and displacement between communication windows and periods of high processing.
2022-10-16
Shi, Yongpeng, Gao, Ya, Xia, Yujie.  2020.  Secrecy Performance Analysis in Internet of Satellites: Physical Layer Security Perspective. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :1185–1189.
As the latest evolving architecture of space networks, Internet of Satellites (IoSat) is regarded as a promising paradigm in the future beyond 5G and 6G wireless systems. However, due to the extremely large number of satellites and open links, it is challenging to ensure communication security in IoSat, especially for wiretap resisting. To the best of our knowledge, it is an entirely new problem to study the security issue in IoSat, since existing works concerning physical layer security (PLS) in satellite networks mainly focused on the space-to-terrestrial links. It is also noted that, we are the first to investigate PLS problem in IoSat. In light of this, we present in this paper an analytical model of PLS in IoSat where a terrestrial transmitter delivers its information to multi-satellite in the presence of eavesdroppers. By adopting the key parameters such as satellites' deployment density, minimum elevation angle, and orbit height, two major secrecy metric including average secrecy capacity and probability are derived and analyzed. As demonstrated by extensive numerical results, the presented theoretical framework can be utilized to efficiently evaluate the secrecy performance of IoSat, and guide the design and optimization for communication security in such systems.
2022-09-30
Hutto, Kevin, Mooney, Vincent J..  2021.  Sensing with Random Encoding for Enhanced Security in Embedded Systems. 2021 10th Mediterranean Conference on Embedded Computing (MECO). :1–6.
Embedded systems in physically insecure environments are subject to additional security risk via capture by an adversary. A captured microchip device can be reverse engineered to recover internal buffer data that would otherwise be inaccessible through standard IO mechanisms. We consider an adversary who has sufficient ability to gain all internal bits and logic from a device at the time of capture as an unsolved threat. In this paper we present a novel sensing architecture that enhances embedded system security by randomly encoding sensed values. We randomly encode data at the time of sensing to minimize the amount of plaintext data present on a device in buffer memory. We encode using techniques that are unintelligible to an adversary even with full internal bit knowledge. The encoding is decipherable by a trusted home server, and we have provided an architecture to perform this decoding. Our experimental results show the proposed architecture meets timing requirements needed to perform communications with a satellite utilizing short-burst data, such as in remote sensing telemetry and tracking applications.
2022-08-10
Ding, Yuanming, Zhao, Yu, Zhang, Ran.  2020.  A Secure Routing Algorithm Based on Trust Value for Micro-nano Satellite Network. 2020 2nd International Conference on Information Technology and Computer Application (ITCA). :229—235.
With the increasing application of micro-nano satellite network, it is extremely vulnerable to the influence of internal malicious nodes in the practical application process. However, currently micro-nano satellite network still lacks effective means of routing security protection. In order to solve this problem, combining with the characteristics of limited energy and computing capacity of micro-nano satellite nodes, this research proposes a secure routing algorithm based on trust value. First, the trust value of the computing node is synthesized, and then the routing path is generated by combining the trust value of the node with the AODV routing algorithm. Simulation results show that the proposed MNS-AODV routing algorithm can effectively resist the influence of internal malicious nodes on data transmission, and it can reduce the packet loss rate and average energy consumption.
2022-07-01
Yin, Jinyu, Jiang, Li, Zhang, Xinggong, Liu, Bin.  2021.  INTCP: Information-centric TCP for Satellite Network. 2021 4th International Conference on Hot Information-Centric Networking (HotICN). :86—91.
Satellite networks are booming to provide high-speed and low latency Internet access, but the transport layer becomes one of the main obstacles. Legacy end-to-end TCP is designed for terrestrial networks, not suitable for error-prone, propagation delay varying, and intermittent satellite links. It is necessary to make a clean-slate design for the satellite transport layer. This paper introduces a novel Information-centric Hop-by-Hop transport layer design, INTCP. It carries out hop-by-hop packets retransmission and hop-by-hop congestion control with the help of cache and request-response model. Hop-by-hop retransmission recovers lost packets on hop, reduces retransmission delay. INTCP controls traffic and congestion also by hop. Each hop tries its best to maximize its bandwidth utilization and improves end-to-end throughput. The capability of caching enables asynchronous multicast in transport layer. This would save precious spectrum resources in the satellite network. The performance of INTCP is evaluated with the simulated Starlink constellation. Long-distance communication with more than 1000km is carried out. The results demonstrate that, for the unicast scenario INTCP could reduce 42% one-way delay, 53% delay jitters, and improve 60% throughput compared with the legacy TCP. In multicast scenario, INTCP could achieve more than 6X throughput.
2022-03-14
Killough, Brian, Rizvi, Syed, Lubawy, Andrew.  2021.  Advancements in the Open Data Cube and the Use of Analysis Ready Data in the Cloud. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. :1793—1795.
The Open Data Cube (ODC), created and facilitated by the Committee on Earth Observation Satellites (CEOS), is an open source software architecture that continues to gain global popularity through the integration of analysis-ready data (ARD) on cloud computing frameworks. In 2021, CEOS released a new ODC sandbox that provides global users with a free and open programming interface connected to Google Earth Engine datasets. The open source toolset allows users to run application algorithms using a Google Colab Python notebook environment. This tool demonstrates rapid creation of science products anywhere in the world without the need to download and process the satellite data. Basic operation of the tool will support many users but can also be scaled in size and scope to support enhanced user needs. The creation of the ODC sandbox was prompted by the migration of many CEOS ARD satellite datasets to the cloud. The combination of these datasets in an interoperable data cube framework will inspire the creation of many new application products and advance open science.
2022-03-09
Park, Byung H., Chattopadhyay, Somrita, Burgin, John.  2021.  Haze Mitigation in High-Resolution Satellite Imagery Using Enhanced Style-Transfer Neural Network and Normalization Across Multiple GPUs. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. :2827—2830.
Despite recent advances in deep learning approaches, haze mitigation in large satellite images is still a challenging problem. Due to amorphous nature of haze, object detection or image segmentation approaches are not applicable. Also it is practically infeasible to obtain ground truths for training. Bounded memory capacity of GPUs is another constraint that limits the size of image to be processed. In this paper, we propose a style transfer based neural network approach to mitigate haze in a large overhead imagery. The network is trained without paired ground truths; further, perception loss is added to restore vivid colors, enhance contrast and minimize artifacts. The paper also illustrates our use of multiple GPUs in a collective way to produce a single coherent clear image where each GPU dehazes different portions of a large hazy image.
2022-01-31
Zulfa, Mulki Indana, Hartanto, Rudy, Permanasari, Adhistya Erna.  2021.  Performance Comparison of Swarm Intelligence Algorithms for Web Caching Strategy. 2021 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT). :45—51.
Web caching is one strategy that can be used to speed up response times by storing frequently accessed data in the cache server. Given the cache server limited capacity, it is necessary to determine the priority of cached data that can enter the cache server. This study simulated cached data prioritization based on an objective function as a characteristic of problem-solving using an optimization approach. The objective function of web caching is formulated based on the variable data size, count access, and frequency-time access. Then we use the knapsack problem method to find the optimal solution. The Simulations run three swarm intelligence algorithms Ant Colony Optimization (ACO), Genetic Algorithm (GA), and Binary Particle Swarm Optimization (BPSO), divided into several scenarios. The simulation results show that the GA algorithm relatively stable and fast to convergence. The ACO algorithm has the advantage of a non-random initial solution but has followed the pheromone trail. The BPSO algorithm is the fastest, but the resulting solution quality is not as good as ACO and GA.
2021-11-08
Gao, Teng, Wang, Lijun, Jin, Xiaofan.  2020.  Analysis of Frequency Offset for Satellite Navigation Receiver Using Carrier-Aided Code Tracking Loop. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :627–630.
Carrier-aided code tracking loop is widely used in satellite navigation receivers. This kind of loop structure can reduce code tracking noise by narrowing the bandwidth of code tracking loop. The performance of carrier-aided code tracking loop in receivers is affected by frequency deviation of reference clock source. This paper analyzes the influence of carrier frequency offset and sampling frequency offset on carrier-aided code tracking loop due to reference clock offset. The results show that large frequency offset can cause code tracking loop lose lock, code tracking loop is more sensitive to sampling frequency deviation and increasing the loop bandwidth can reduce the effects of frequency offset. This analysis provides reference for receiver tracking loop design.
2021-08-31
Pan, Ziwen, Djordjevic, Ivan B..  2020.  Security of Satellite-Based CV-QKD under Realistic Assumptions. 2020 22nd International Conference on Transparent Optical Networks (ICTON). :1—4.
With the vastly growing need for secure communication, quantum key distribution (QKD) has been developed to provide high security for communications against potential attacks from the fast-developing quantum computers. Among different QKD protocols, continuous variable (CV-) QKD employing Gaussian modulated coherent states has been promising for its complete security proof and its compatibility with current communication systems in implementation with homodyne or heterodyne detection. Since satellite communication has been more and more important in developing global communication networks, there have been concerns about the security in satellite communication and how we should evaluate the security of CV-QKD in such scenarios. To better analyse the secure key rate (SKR) in this case, in this invited paper we investigate the CV-QKD SKR lower bounds under realistic assumptions over a satellite-to-satellite channel. We also investigate the eavesdropper's best strategy to apply in these scenarios. We demonstrate that for these channel conditions with well-chosen carrier centre frequency and receiver aperture size, based on channel parameters, we can optimize SKR correspondingly. The proposed satellite-based QKD system provides high security level for the coming 5G and beyond networks, the Internet of things, self-driving cars, and other fast-developing applications.
2021-05-20
Sunehra, Dhiraj, Sreshta, V. Sai, Shashank, V., Kumar Goud, B. Uday.  2020.  Raspberry Pi Based Smart Wearable Device for Women Safety using GPS and GSM Technology. 2020 IEEE International Conference for Innovation in Technology (INOCON). :1—5.
Security has become a major concern for women, children and even elders in every walk of their life. Women are getting assaulted and molested, children are getting kidnapped, elder citizens are also facing many problems like robbery, etc. In this paper, a smart security solution called smart wearable device system is implemented using the Raspberry Pi3 for enhancing the safety and security of women/children. It works as an alert as well as a security system. It provides a buzzer alert alert to the people who are nearby to the user (wearing the smart device). The system uses Global Positioning System (GPS) to locate the user, sends the location of the user through SMS to the emergency contact and police using the Global System for Mobile Communications (GSM) / General Radio Packet Service (GPRS) technology. The device also captures the image of the assault and surroundings of the user or victim using USB Web Camera interfaced to the device and sends it as an E-mail alert to the emergency contact soon after the user presses the panic button present on Smart wearable device system.
2021-05-05
Rizvi, Syed R, Lubawy, Andrew, Rattz, John, Cherry, Andrew, Killough, Brian, Gowda, Sanjay.  2020.  A Novel Architecture of Jupyterhub on Amazon Elastic Kubernetes Service for Open Data Cube Sandbox. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. :3387—3390.

The Open Data Cube (ODC) initiative, with support from the Committee on Earth Observation Satellites (CEOS) System Engineering Office (SEO) has developed a state-of-the-art suite of software tools and products to facilitate the analysis of Earth Observation data. This paper presents a short summary of our novel architecture approach in a project related to the Open Data Cube (ODC) community that provides users with their own ODC sandbox environment. Users can have a sandbox environment all to themselves for the purpose of running Jupyter notebooks that leverage the ODC. This novel architecture layout will remove the necessity of hosting multiple users on a single Jupyter notebook server and provides better management tooling for handling resource usage. In this new layout each user will have their own credentials which will give them access to a personal Jupyter notebook server with access to a fully deployed ODC environment enabling exploration of solutions to problems that can be supported by Earth observation data.

2021-04-27
Syafalni, I., Fadhli, H., Utami, W., Dharma, G. S. A., Mulyawan, R., Sutisna, N., Adiono, T..  2020.  Cloud Security Implementation using Homomorphic Encryption. 2020 IEEE International Conference on Communication, Networks and Satellite (Comnetsat). :341—345.

With the advancement of computing and communication technologies, data transmission in the internet are getting bigger and faster. However, it is necessary to secure the data to prevent fraud and criminal over the internet. Furthermore, most of the data related to statistics requires to be analyzed securely such as weather data, health data, financial and other services. This paper presents an implementation of cloud security using homomorphic encryption for data analytic in the cloud. We apply the homomorphic encryption that allows the data to be processed without being decrypted. Experimental results show that, for the polynomial degree 26, 28, and 210, the total executions are 2.2 ms, 4.4 ms, 25 ms per data, respectively. The implementation is useful for big data security such as for environment, financial and hospital data analytics.

2021-02-16
Wei, D., Wei, N., Yang, L., Kong, Z..  2020.  SDN-based multi-controller optimization deployment strategy for satellite network. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :467—473.
Due to the network topology high dynamic changes, the number of ground users and the impact of uneven traffic, the load difference between SDN-based satellite network controllers varies widely, which will cause network performance such as network delay and throughput to drop dramatically. Aiming at the above problems, a multi-controller optimized deployment strategy of satellite network based on SDN was proposed. First, the controller's load state is divided into four types: overload state, high load state, normal state, and idle state; second, when a controller in the network is idle, the switch under its jurisdiction is migrated to the adjacent low load controller and turn off the controller to reduce waste of resources. When the controller is in a high-load state and an overload state, consider both the controller and the switch, and migrate the high-load switch to the adjacent low-load controller. Balance the load between controllers, improve network performance, and improve network performance and network security. Simulation results show that the method has an average throughput improvement of 2.7% and a delay reduction of 3.1% compared with MCDALB and SDCLB methods.
2020-12-02
Zhao, Q., Du, P., Gerla, M., Brown, A. J., Kim, J. H..  2018.  Software Defined Multi-Path TCP Solution for Mobile Wireless Tactical Networks. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :1—9.
Naval Battlefield Network communications rely on wireless network technologies to transmit data between different naval entities, such as ships and shore nodes. Existing naval battle networks heavily depend on the satellite communication system using single-path TCP for reliable, non-interactive data. While satisfactory for traditional use cases, this communication model may be inadequate for outlier cases, such as those arising from satellite failure and wireless signal outage. To promote network stability and assurance in such scenarios, the addition of unmanned aerial vehicles to function as relay points can complement network connectivity and alleviate potential strains in adverse conditions. The inherent mobility of aerial vehicles coupled with existing source node movements, however, leads to frequent network handovers with non-negligible overhead and communication interruption, particularly in the present single-path model. In this paper, we propose a solution based on multi-path TCP and software-defined networking, which, when applied to mobile wireless heterogeneous networks, reduces the network handover delay and improves the total throughput for transmissions among various naval entities at sea and littoral. In case of single link failure, the presence of a connectable relay point maintains TCP connectivity and reduces the risk of service interruption. To validate feasibility and to evaluate performance of our solution, we constructed a Mininet- WiFi emulation testbed. Compared against single-path TCP communication methods, execution of the testbed when configured to use multi-path TCP and UAV relays yields demonstrably more stable network handovers with relatively low overhead, greater reliability of network connectivity, and higher overall end-to-end throughput. Because the SDN global controller dynamically adjusts allocations per user, the solution effectively eliminates link congestion and promotes more efficient bandwidth utilization.
2020-12-01
Di, A., Ruisheng, S., Lan, L., Yueming, L..  2019.  On the Large-Scale Traffic DDoS Threat of Space Backbone Network. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :192—194.

Satellite networks play an important role in realizing the combination of the space networks and ground networks as well as the global coverage of the Internet. However, due to the limitation of bandwidth resource, compared with ground network, space backbone networks are more likely to become victims of DDoS attacks. Therefore, we hypothesize an attack scenario that DDoS attackers make reflection amplification attacks, colluding with terminal devices accessing space backbone network, and exhaust bandwidth resources, resulting in degradation of data transmission and service delivery. Finally, we propose some plain countermeasures to provide solutions for future researchers.

2020-07-03
Arif, Syed Waqas, Coskun, Adem, Kale, Izzet.  2019.  A Fully Adaptive Lattice-based Notch Filter for Mitigation of Interference in GPS. 2019 15th Conference on Ph.D Research in Microelectronics and Electronics (PRIME). :217—220.

Intentional interference presents a major threat to the operation of the Global Navigation Satellite Systems. Adaptive notch filtering provides an excellent countermeasure and deterrence against narrowband interference. This paper presents a comparative performance analysis of two adaptive notch filtering algorithms for GPS specific applications which are based on Direct form Second Order and Lattice-Based notch filter structures. Performance of each algorithm is evaluated considering the ratio of jamming to noise density against the effective signal to noise ratio at the output of the correlator. A fully adaptive lattice notch filter is proposed, which is able to simultaneously adapt its coefficients to alter the notch frequency along with the bandwidth of the notch filter. The filter demonstrated a superior tracking performance and convergence rate in comparison to an existing algorithm taken from the literature. Moreover, this paper describes the complete GPS modelling platform implemented in Simulink too.

2020-04-06
Zhou, Yejun, Qiu, Lede, Yu, Hang, Sun, Chunhui.  2018.  Study on Security Technology of Internet of Things Based on Network Coding. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :353–357.
Along with the continuous progress of the information technology, Internet of Things is the inevitable way for realizing the fusion of communication and traditional network technology. Network coding, an important breakthrough in the field of communication, has many applied advantages in information network. This article analyses the eavesdropping problem of Internet of Things and presents an information secure network coding scheme against the eavesdropping adversaries. We show that, if the number of links the adversaries can eavesdrop on is less than the max-flow of a network, the proposed coding scheme not only `achieves the prefect information secure condition but also the max-flow of the network.