Visible to the public Biblio

Filters: Keyword is public domain software  [Clear All Filters]
2018-05-09
Barenghi, A., Mainardi, N., Pelosi, G..  2017.  A Security Audit of the OpenPGP Format. 2017 14th International Symposium on Pervasive Systems, Algorithms and Networks 2017 11th International Conference on Frontier of Computer Science and Technology 2017 Third International Symposium of Creative Computing (ISPAN-FCST-ISCC). :336–343.

For over two decades the OpenPGP format has provided the mainstay of email confidentiality and authenticity, and is currently being relied upon to provide authenticated package distributions in open source Unix systems. In this work, we provide the first language theoretical analysis of the OpenPGP format, classifying it as a deterministic context free language and establishing that an automatically generated parser can in principle be defined. However, we show that the number of rules required to describe it with a deterministic context free grammar is prohibitively high, and we identify security vulnerabilities in the OpenPGP format specification. We identify possible attacks aimed at tampering with messages and certificates while retaining their syntactical and semantical validity. We evaluate the effectiveness of these attacks against the two OpenPGP implementations covering the overwhelming majority of uses, i.e., the GNU Privacy Guard (GPG) and Symantec PGP. The results of the evaluation show that both implementations turn out not to be vulnerable due to conser- vative choices in dealing with malicious input data. Finally, we provide guidelines to improve the OpenPGP specification

2018-05-01
Kaur, A., Jain, S., Goel, S..  2017.  A Support Vector Machine Based Approach for Code Smell Detection. 2017 International Conference on Machine Learning and Data Science (MLDS). :9–14.

Code smells may be introduced in software due to market rivalry, work pressure deadline, improper functioning, skills or inexperience of software developers. Code smells indicate problems in design or code which makes software hard to change and maintain. Detecting code smells could reduce the effort of developers, resources and cost of the software. Many researchers have proposed different techniques like DETEX for detecting code smells which have limited precision and recall. To overcome these limitations, a new technique named as SVMCSD has been proposed for the detection of code smells, based on support vector machine learning technique. Four code smells are specified namely God Class, Feature Envy, Data Class and Long Method and the proposed technique is validated on two open source systems namely ArgoUML and Xerces. The accuracy of SVMCSD is found to be better than DETEX in terms of two metrics, precision and recall, when applied on a subset of a system. While considering the entire system, SVMCSD detect more occurrences of code smells than DETEX.

2018-04-04
Ran, L., Lu, L., Lin, H., Han, M., Zhao, D., Xiang, J., Yu, H., Ma, X..  2017.  An Experimental Study of Four Methods for Homology Analysis of Firmware Vulnerability. 2017 International Conference on Dependable Systems and Their Applications (DSA). :42–50.

In the production process of embedded device, due to the frequent reuse of third-party libraries or development kits, there are large number of same vulnerabilities that appear in more than one firmware. Homology analysis is often used in detecting this kind of vulnerabilities caused by code reuse or third-party reuse and in the homology analysis, the widely used methods are mainly Binary difference analysis, Normalized compression distance, String feature matching and Fuzz hash. But when we use these methods for homology analysis, we found that the detection result is not ideal and there is a high false positive rate. Focusing on this problem, we analyzed the application scenarios of these four methods and their limitations by combining different methods and different types of files and the experiments show that the combination of methods and files have a better performance in homology analysis.

2018-02-15
Filaretov, V., Kurganov, S., Gorshkov, K..  2017.  Multiple fault diagnosis in analog circuits using the indirect compensation theorem. 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1–6.

A method for the multiple faults diagnosis in linear analog circuits is presented in this paper. The proposed approach is based upon the concept named by the indirect compensation theorem. This theorem is reducing the procedure of fault diagnosis in the analog circuit to the symbolic analysis process. An extension of the indirect compensation theorem for the linear subcircuit is proposed. The indirect compensation provides equivalent replacement of the n-ports subcircuit by n norators and n fixators of voltages and currents. The proposed multiple faults diagnosis techniques can be used for evaluation of any kind of terminal characteristics of the two-port network. For calculation of the circuit determinant expressions, the Generalized Parameter Extraction Method is implemented. The main advantage of the analysis method is that it is cancellation free. It requires neither matrix nor ordinary graph description of the circuit. The process of symbolic circuit analysis is automated by the freeware computer program Cirsym which can be used online. The experimental results are presented to show the efficiency and reliability of the proposed technique.

2018-01-16
Benjamin, B., Coffman, J., Esiely-Barrera, H., Farr, K., Fichter, D., Genin, D., Glendenning, L., Hamilton, P., Harshavardhana, S., Hom, R. et al..  2017.  Data Protection in OpenStack. 2017 IEEE 10th International Conference on Cloud Computing (CLOUD). :560–567.

As cloud computing becomes increasingly pervasive, it is critical for cloud providers to support basic security controls. Although major cloud providers tout such features, relatively little is known in many cases about their design and implementation. In this paper, we describe several security features in OpenStack, a widely-used, open source cloud computing platform. Our contributions to OpenStack range from key management and storage encryption to guaranteeing the integrity of virtual machine (VM) images prior to boot. We describe the design and implementation of these features in detail and provide a security analysis that enumerates the threats that each mitigates. Our performance evaluation shows that these security features have an acceptable cost-in some cases, within the measurement error observed in an operational cloud deployment. Finally, we highlight lessons learned from our real-world development experiences from contributing these features to OpenStack as a way to encourage others to transition their research into practice.

2017-12-20
Sudhodanan, A., Carbone, R., Compagna, L., Dolgin, N., Armando, A., Morelli, U..  2017.  Large-Scale Analysis Detection of Authentication Cross-Site Request Forgeries. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :350–365.
Cross-Site Request Forgery (CSRF) attacks are one of the critical threats to web applications. In this paper, we focus on CSRF attacks targeting web sites' authentication and identity management functionalities. We will refer to them collectively as Authentication CSRF (Auth-CSRF in short). We started by collecting several Auth-CSRF attacks reported in the literature, then analyzed their underlying strategies and identified 7 security testing strategies that can help a manual tester uncover vulnerabilities enabling Auth-CSRF. In order to check the effectiveness of our testing strategies and to estimate the incidence of Auth-CSRF, we conducted an experimental analysis considering 300 web sites belonging to 3 different rank ranges of the Alexa global top 1500. The results of our experiments are alarming: out of the 300 web sites we considered, 133 qualified for conducting our experiments and 90 of these suffered from at least one vulnerability enabling Auth-CSRF (i.e. 68%). We further generalized our testing strategies, enhanced them with the knowledge we acquired during our experiments and implemented them as an extension (namely CSRF-checker) to the open-source penetration testing tool OWASP ZAP. With the help of CSRFchecker, we tested 132 additional web sites (again from the Alexa global top 1500) and identified 95 vulnerable ones (i.e. 72%). Our findings include serious vulnerabilities among the web sites of Microsoft, Google, eBay etc. Finally, we responsibly disclosed our findings to the affected vendors.
Mohammadi, M., Chu, B., Lipford, H. R..  2017.  Detecting Cross-Site Scripting Vulnerabilities through Automated Unit Testing. 2017 IEEE International Conference on Software Quality, Reliability and Security (QRS). :364–373.

The best practice to prevent Cross Site Scripting (XSS) attacks is to apply encoders to sanitize untrusted data. To balance security and functionality, encoders should be applied to match the web page context, such as HTML body, JavaScript, and style sheets. A common programming error is the use of a wrong encoder to sanitize untrusted data, leaving the application vulnerable. We present a security unit testing approach to detect XSS vulnerabilities caused by improper encoding of untrusted data. Unit tests for the XSS vulnerability are automatically constructed out of each web page and then evaluated by a unit test execution framework. A grammar-based attack generator is used to automatically generate test inputs. We evaluate our approach on a large open source medical records application, demonstrating that we can detect many 0-day XSS vulnerabilities with very low false positives, and that the grammar-based attack generator has better test coverage than industry best practices.

2017-03-07
Shanthi, K., Seenivasan, D..  2015.  Detection of botnet by analyzing network traffic flow characteristics using open source tools. 2015 IEEE 9th International Conference on Intelligent Systems and Control (ISCO). :1–5.

Botnets are emerging as the most serious cyber threat among different forms of malware. Today botnets have been facilitating to launch many cybercriminal activities like DDoS, click fraud, phishing attacks etc. The main purpose of botnet is to perform massive financial threat. Many large organizations, banks and social networks became the target of bot masters. Botnets can also be leased to motivate the cybercriminal activities. Recently several researches and many efforts have been carried out to detect bot, C&C channels and bot masters. Ultimately bot maters also strengthen their activities through sophisticated techniques. Many botnet detection techniques are based on payload analysis. Most of these techniques are inefficient for encrypted C&C channels. In this paper we explore different categories of botnet and propose a detection methodology to classify bot host from the normal host by analyzing traffic flow characteristics based on time intervals instead of payload inspection. Due to that it is possible to detect botnet activity even encrypted C&C channels are used.

2017-02-14
A. K. M. A., J. C. D..  2015.  "Execution Time Measurement of Virtual Machine Volatile Artifacts Analyzers". 2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS). :314-319.

Due to a rapid revaluation in a virtualization environment, Virtual Machines (VMs) are target point for an attacker to gain privileged access of the virtual infrastructure. The Advanced Persistent Threats (APTs) such as malware, rootkit, spyware, etc. are more potent to bypass the existing defense mechanisms designed for VM. To address this issue, Virtual Machine Introspection (VMI) emerged as a promising approach that monitors run state of the VM externally from hypervisor. However, limitation of VMI lies with semantic gap. An open source tool called LibVMI address the semantic gap. Memory Forensic Analysis (MFA) tool such as Volatility can also be used to address the semantic gap. But, it needs to capture a memory dump (RAM) as input. Memory dump acquires time and its analysis time is highly crucial if Intrusion Detection System IDS (IDS) depends on the data supplied by FAM or VMI tool. In this work, live virtual machine RAM dump acquire time of LibVMI is measured. In addition, captured memory dump analysis time consumed by Volatility is measured and compared with other memory analyzer such as Rekall. It is observed through experimental results that, Rekall takes more execution time as compared to Volatility for most of the plugins. Further, Volatility and Rekall are compared with LibVMI. It is noticed that examining the volatile data through LibVMI is faster as it eliminates memory dump acquire time.

2015-05-06
Xin Xia, Yang Feng, Lo, D., Zhenyu Chen, Xinyu Wang.  2014.  Towards more accurate multi-label software behavior learning. Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week - IEEE Conference on. :134-143.

In a modern software system, when a program fails, a crash report which contains an execution trace would be sent to the software vendor for diagnosis. A crash report which corresponds to a failure could be caused by multiple types of faults simultaneously. Many large companies such as Baidu organize a team to analyze these failures, and classify them into multiple labels (i.e., multiple types of faults). However, it would be time-consuming and difficult for developers to manually analyze these failures and come out with appropriate fault labels. In this paper, we automatically classify a failure into multiple types of faults, using a composite algorithm named MLL-GA, which combines various multi-label learning algorithms by leveraging genetic algorithm (GA). To evaluate the effectiveness of MLL-GA, we perform experiments on 6 open source programs and show that MLL-GA could achieve average F-measures of 0.6078 to 0.8665. We also compare our algorithm with Ml.KNN and show that on average across the 6 datasets, MLL-GA improves the average F-measure of MI.KNN by 14.43%.
 

2015-05-04
Tomandl, A., Herrmann, D., Fuchs, K.-P., Federrath, H., Scheuer, F..  2014.  VANETsim: An open source simulator for security and privacy concepts in VANETs. High Performance Computing Simulation (HPCS), 2014 International Conference on. :543-550.

Aside from massive advantages in safety and convenience on the road, Vehicular Ad Hoc Networks (VANETs) introduce security risks to the users. Proposals of new security concepts to counter these risks are challenging to verify because of missing real world implementations of VANETs. To fill this gap, we introduce VANETsim, an event-driven simulation platform, specifically designed to investigate application-level privacy and security implications in vehicular communications. VANETsim focuses on realistic vehicular movement on real road networks and communication between the moving nodes. A powerful graphical user interface and an experimentation environment supports the user when setting up or carrying out experiments.