Biblio
Bitcoin is popular not only with consumers, but also with cybercriminals (e.g., in ransomware and online extortion, and commercial online child exploitation). Given the potential of Bitcoin to be involved in a criminal investigation, the need to have an up-to-date and in-depth understanding on the forensic acquisition and analysis of Bitcoins is crucial. However, there has been limited forensic research of Bitcoin in the literature. The general focus of existing research is on postmortem analysis of specific locations (e.g. wallets on mobile devices), rather than a forensic approach that combines live data forensics and postmortem analysis to facilitate the identification, acquisition, and analysis of forensic traces relating to the use of Bitcoins on a system. Hence, the latter is the focus of this paper where we present an open source tool for live forensic and postmortem analysing automatically. Using this open source tool, we describe a list of target artifacts that can be obtained from a forensic investigation of popular Bitcoin clients and Web Wallets on different web browsers installed on Windows 7 and Windows 10 platforms.
The software development life cycle (SDLC) starts with business and functional specifications signed with a client. In addition to this, the specifications also capture policy / procedure / contractual / regulatory / legislation / standard compliances with respect to a given client industry. The SDLC must adhere to service level agreements (SLAs) while being compliant to development activities, processes, tools, frameworks, and reuse of open-source software components. In today's world, global software development happens across geographically distributed (autonomous) teams consuming extraordinary amounts of open source components drawn from a variety of disparate sources. Although this is helping organizations deal with technical and economic challenges, it is also increasing unintended risks, e.g., use of a non-complaint license software might lead to copyright issues and litigations, use of a library with vulnerabilities pose security risks etc. Mitigation of such risks and remedial measures is a challenge due to lack of visibility and transparency of activities across these distributed teams as they mostly operate in silos. We believe a unified model that non-invasively monitors and analyzes the activities of distributed teams will help a long way in building software that adhere to various compliances. In this paper, we propose a decentralized CAG - Compliance Adherence and Governance framework using blockchain technologies. Our framework (i) enables the capturing of required data points based on compliance specifications, (ii) analyzes the events for non-conformant behavior through smart contracts, (iii) provides real-time alerts, and (iv) records and maintains an immutable audit trail of various activities.
Computational Intelligence (CI) algorithms/techniques are packaged in a variety of disparate frameworks/applications that all vary with respect to specific supported functionality and implementation decisions that drastically change performance. Developers looking to employ different CI techniques are faced with a series of trade-offs in selecting the appropriate library/framework. These include resource consumption, features, portability, interface complexity, ease of parallelization, etc. Considerations such as language compatibility and familiarity with a particular library make the choice of libraries even more difficult. The paper introduces MeetCI, an open source software framework for computational intelligence software design automation that facilitates the application design decisions and their software implementation process. MeetCI abstracts away specific framework details of CI techniques designed within a variety of libraries. This allows CI users to benefit from a variety of current frameworks without investigating the nuances of each library/framework. Using an XML file, developed in accordance with the specifications, the user can design a CI application generically, and utilize various CI software without having to redesign their entire technology stack. Switching between libraries in MeetCI is trivial and accessing the right library to satisfy a user's goals can be done easily and effectively. The paper discusses the framework's use in design of various applications. The design process is illustrated with four different examples from expert systems and machine learning domains, including the development of an expert system for security evaluation, two classification problems and a prediction problem with recurrent neural networks.
In Software Defined Networking (SDN) control plane of forwarding devices is concentrated in the SDN controller, which assumes the role of a network operating system. Big share of today's commercial SDN controllers are based on OpenDaylight, an open source SDN controller platform, whose bug repository is publicly available. In this article we provide a first insight into 8k+ bugs reported in the period over five years between March 2013 and September 2018. We first present the functional components in OpenDaylight architecture, localize the most vulnerable modules and measure their contribution to the total bug content. We provide high fidelity models that can accurately reproduce the stochastic behaviour of bug manifestation and bug removal rates, and discuss how these can be used to optimize the planning of the test effort, and to improve the software release management. Finally, we study the correlation between the code internals, derived from the Git version control system, and software defect metrics, derived from Jira issue tracker. To the best of our knowledge, this is the first study to provide a comprehensive analysis of bug characteristics in a production grade SDN controller.
Code churn has been successfully used to identify defect inducing changes in software development. Our recent analysis of the cross-release code churn showed that several design metrics exhibit moderate correlation with the number of defects in complex systems. The goal of this paper is to explore whether cross-release code churn can be used to identify critical design change and contribute to prediction of defects for software in evolution. In our case study, we used two types of data from consecutive releases of open-source projects, with and without cross-release code churn, to build standard prediction models. The prediction models were trained on earlier releases and tested on the following ones, evaluating the performance in terms of AUC, GM and effort aware measure Pop. The comparison of their performance was used to answer our research question. The obtained results showed that the prediction model performs better when cross-release code churn is included. Practical implication of this research is to use cross-release code churn to aid in safe planning of next release in software development.
Smartphones have evolved over the years from simple devices to communicate with each other to fully functional portable computers although with comparatively less computational power but inholding multiple applications within. With the smartphone revolution, the value of personal data has increased. As technological complexities increase, so do the vulnerabilities in the system. Smartphones are the latest target for attacks. Android being an open source platform and also the most widely used smartphone OS draws the attention of many malware writers to exploit the vulnerabilities of it. Attackers try to take advantage of these vulnerabilities and fool the user and misuse their data. Malwares have come a long way from simple worms to sophisticated DDOS using Botnets, the latest trends in computer malware tend to go in the distributed direction, to evade the multiple anti-virus apps developed to counter generic viruses and Trojans. However, the recent trend in android system is to have a combination of applications which acts as malware. The applications are benign individually but when grouped, these may result into a malicious activity. This paper proposes a new category of distributed malware in android system, how it can be used to evade the current security, and how it can be detected with the help of graph matching algorithm.
Web application technologies are growing rapidly with continuous innovation and improvements. This paper focuses on the popular Spring Boot [1] java-based framework for building web and enterprise applications and how it provides the flexibility for service-oriented architecture (SOA). One challenge with any Spring-based applications is its level of complexity with configurations. Spring Boot makes it easy to create and deploy stand-alone, production-grade Spring applications with very little Spring configuration. Example, if we consider Spring Model-View-Controller (MVC) framework [2], we need to configure dispatcher servlet, web jars, a view resolver, and component scan among other things. To solve this, Spring Boot provides several Auto Configuration options to setup the application with any needed dependencies. Another challenge is to identify the framework dependencies and associated library versions required to develop a web application. Spring Boot offers simpler dependency management by using a comprehensive, but flexible, framework and the associated libraries in one single dependency, which provides all the Spring related technology that you need for starter projects as compared to CRUD web applications. This framework provides a range of additional features that are common across many projects such as embedded server, security, metrics, health checks, and externalized configuration. Web applications are generally packaged as war and deployed to a web server, but Spring Boot application can be packaged either as war or jar file, which allows to run the application without the need to install and/or configure on the application server. In this paper, we discuss how Atmospheric Radiation Measurement (ARM) Data Center (ADC) at Oak Ridge National Laboratory, is using Spring Boot to create a SOA based REST [4] service API, that bridges the gap between frontend user interfaces and backend database. Using this REST service API, ARM scientists are now able to submit reports via a user form or a command line interface, which captures the same data quality or other important information about ARM data.
Among the threats to information systems of state institutions, enterprises and financial organizations of particular importance are those originating from organized criminal groups that specialize in obtaining unauthorized access to the computer information protected by law. Criminal groups often possess a material base including financial, technical, human and other resources that allow to perform targeted attacks on information resources as secretly as possible. The principal features of such targeted attacks are the use of software created or modified specifically for use in illegal purposes with respect to specific organizations. Due to these circumstances, the detection of such attacks is quite difficult, and their prevention is even more complicated. In this regard, the task of identifying and analyzing such threats is very relevant. One effective way to solve it is to implement the Honeypot system, which allows to research the strategy and tactics of the attackers. In the present article, there is proposed the original architecture of the Honeypot system designed to study targeted attacks on information systems of criminogenic objects. The architectural design includes such basic elements as the functional component, the registrar of events occurring in the system and the protector. The key features of the proposed Honeypot system are considered, and the functional purpose of its main components is described. The proposed system can find its application in providing information security of institutions, organizations and enterprises, it can be used in the development of information security systems.
This research was an experimental analysis of the Intrusion Detection Systems(IDS) with Honey Pot conducting through a study of using Honey Pot in tricking, delaying or deviating the intruder to attack new media broadcasting server for IPTV system. Denial of Service(DoS) over wire network and wireless network consisted of three types of attacks: TCP Flood, UDP Flood and ICMP Flood by Honey Pot, where the Honeyd would be used. In this simulation, a computer or a server in the network map needed to be secured by the inactivity firewalls or other security tools for the intrusion of the detection systems and Honey Pot. The network intrusion detection system used in this experiment was SNORT (www.snort.org) developed in the form of the Open Source operating system-Linux. The results showed that, from every experiment, the internal attacks had shown more threat than the external attacks. In addition, attacks occurred through LAN network posted 50% more disturb than attacks occurred on WIFI. Also, the external attacks through LAN posted 95% more attacks than through WIFI. However, the number of attacks presented by TCP, UDP and ICMP were insignificant. This result has supported the assumption that Honey Pot was able to help detecting the intrusion. In average, 16% of the attacks was detected by Honey Pot in every experiment.
As one of the most commonly used protocols in VPN technology, IPsec has many advantages. However, certain difficulties are posed to the audit work by the protection of in-formation. In this paper, we propose an audit method via man-in-the-middle mechanism, and design a prototype system with DPDK technology. Experiments are implemented in an IPv4 network environment, using default configuration of IPsec VPN configured with known PSK, on operating systems such as windows 7, windows 10, Android and iOS. Experimental results show that the prototype system can obtain the effect of content auditing well without affecting the normal communication between IPsec VPN users.
This paper presents our results from identifying anddocumenting false positives generated by static code analysistools. By false positives, we mean a static code analysis toolgenerates a warning message, but the warning message isnot really an error. The goal of our study is to understandthe different kinds of false positives generated so we can (1)automatically determine if an error message is truly indeed a truepositive, and (2) reduce the number of false positives developersand testers must triage. We have used two open-source tools andone commercial tool in our study. The results of our study haveled to 14 core false positive patterns, some of which we haveconfirmed with static code analysis tool developers.