Biblio
Video streams acquired from thermal cameras are proven to be beneficial in diverse number of fields including military, healthcare, law enforcement, and security. Despite the hype, thermal imaging is increasingly affected by poor resolution, where it has expensive optical sensors and inability to attain optical precision. In recent years, deep learning based super-resolution algorithms are developed to enhance the video frame resolution at high accuracy. This paper presents a comparative analysis of super resolution (SR) techniques based on deep neural networks (DNN) that are applied on thermal video dataset. SRCNN, EDSR, Auto-encoder, and SRGAN are also discussed and investigated. Further the results on benchmark thermal datasets including FLIR, OSU thermal pedestrian database and OSU color thermal database are evaluated and analyzed. Based on the experimental results, it is concluded that, SRGAN has delivered a superior performance on thermal frames when compared to other techniques and improvements, which has the ability to provide state-of-the art performance in real time operations.
Person re-identification(Person Re-ID) means that images of a pedestrian from cameras in a surveillance camera network can be automatically retrieved based on one of this pedestrian's image from another camera. The appearance change of pedestrians under different cameras poses a huge challenge to person re-identification. Person re-identification systems based on deep learning can effectively extract the appearance features of pedestrians. In this paper, the feature enhancement experiment is conducted, and the result showed that the current person reidentification datasets are relatively small and cannot fully meet the need of deep training. Therefore, this paper studied the method of using generative adversarial network to extend the person re-identification datasets and proposed a label smoothing regularization for outliers with weight (LSROW) algorithm to make full use of the generated data, effectively improved the accuracy of person re-identification.
This paper work is focused on Performance comparison of intrusion detection system between DBN Algorithm and SPELM Algorithm. Researchers have used this new algorithm SPELM to perform experiments in the area of face recognition, pedestrian detection, and for network intrusion detection in the area of cyber security. The scholar used the proposed State Preserving Extreme Learning Machine(SPELM) algorithm as machine learning classifier and compared it's performance with Deep Belief Network (DBN) algorithm using NSL KDD dataset. The NSL- KDD dataset has four lakhs of data record; out of which 40% of data were used for training purposes and 60% data used in testing purpose while calculating the performance of both the algorithms. The experiment as performed by the scholar compared the Accuracy, Precision, recall and Computational Time of existing DBN algorithm with proposed SPELM Algorithm. The findings have show better performance of SPELM; when compared its accuracy of 93.20% as against 52.8% of DBN algorithm;69.492 Precision of SPELM as against 66.836 DBN and 90.8 seconds of Computational time taken by SPELM as against 102 seconds DBN Algorithm.
Road In this paper, we focus on both the road vehicle and pedestrians detection, namely obstacle detection. At the same time, a new obstacle detection and classification technique in dynamical background is proposed. Obstacle detection is based on inverse perspective mapping and homography. Obstacle classification is based on fuzzy neural network. The estimation of the vanishing point relies on feature extraction strategy, which segments the lane markings of the images by combining a histogram-based segmentation with temporal filtering. Then, the vanishing point of each image is stabilized by means of a temporal filtering along the estimates of previous images. The IPM image is computed based on the stabilized vanishing point. The method exploits the geometrical relations between the elements in the scene so that obstacle can be detected. The estimated homography of the road plane between successive images is used for image alignment. A new fuzzy decision fusion method with fuzzy attribution for obstacle detection and classification application is described. The fuzzy decision function modifies parameters with auto-adapted algorithm to get better classification probability. It is shown that the method can achieve better classification result.