Biblio
The growing diffusion of robotics in our daily life demands a deeper understanding of the mechanisms of trust in human-robot interaction. The performance of a robot is one of the most important factors influencing the trust of a human user. However, it is still unclear whether the circumstances in which a robot fails to affect the user's trust. We investigate how the perception of robot failures may influence the willingness of people to cooperate with the robot by following its instructions in a time-critical task. We conducted an experiment in which participants interacted with a robot that had previously failed in a related or an unrelated task. We hypothesized that users' observed and self-reported trust ratings would be higher in the condition where the robot has previously failed in an unrelated task. A proof-of-concept study with nine participants timidly confirms our hypothesis. At the same time, our results reveal some flaws in the design experimental, and encourage a future large scale study.
With the evolution of computing from using personal computers to use of online Internet of Things (IoT) services and applications, security risks have also evolved as a major concern. The use of Fog computing enhances reliability and availability of the online services due to enhanced heterogeneity and increased number of computing servers. However, security remains an open challenge. Various trust models have been proposed to measure the security strength of available service providers. We utilize the quantized security of Datacenters and propose a new security-based service broker policy(SbSBP) for Fog computing environment to allocate the optimal Datacenter(s) to serve users' requests based on users' requirements of cost, time and security. Further, considering the dynamic nature of Fog computing, the concept of dynamic reconfiguration has been added. Comparative analysis of simulation results shows the effectiveness of proposed policy to incorporate users' requirements in the decision-making process.
Distinguishing and classifying different types of malware is important to better understanding how they can infect computers and devices, the threat level they pose and how to protect against them. In this paper, a system for classifying malware programs is presented. The paper describes the architecture of the system and assesses its performance on a publicly available database (provided by Microsoft for the Microsoft Malware Classification Challenge BIG2015) to serve as a benchmark for future research efforts. First, the malicious programs are preprocessed such that they are visualized as gray scale images. We then make use of an architecture comprised of multiple layers (multiple levels of encoding) to carry out the classification process of those images/programs. We compare the performance of this approach against traditional machine learning and pattern recognition algorithms. Our experimental results show that the deep learning architecture yields a boost in performance over those conventional/standard algorithms. A hold-out validation analysis using the superior architecture shows an accuracy in the order of 99.15%.
There is a long-standing need for improved cybersecurity through automation of attack signature detection, classification, and response. In this paper, we present experimental test bed results from an implementation of autonomic control plane feedback based on the Observe, Orient, Decide, Act (OODA) framework. This test bed modeled the building blocks for a proposed zero trust cloud data center network. We present test results of trials in which identity management with automated threat response and packet-based authentication were combined with dynamic management of eight distinct network trust levels. The log parsing and orchestration software we created work alongside open source log management tools to coordinate and integrate threat response from firewalls, authentication gateways, and other network devices. Threat response times are measured and shown to be a significant improvement over conventional methods.
Computer systems face the threat of deliberate security intrusions due to malicious attacks that exploit security holes or vulnerabilities. In practice, these security holes or vulnerabilities still remain in the system and applications even if developers carefully execute system testing. Thus it is necessary and important to develop the mechanism to prevent and/or tolerate security intrusions. As a result, the computer systems are often evaluated with confidentiality, integrity and availability (CIA) criteria from the viewpoint of security, and security is treated as a QoS (Quality of Service) attribute at par with other QoS attributes such as capacity and performance. In this paper, we present the method for quantifying a security attribute called mean time to security failure (MTTSF) of a VM-based intrusion tolerant system based on queueing theory.
Cognitive radio networks (CRNs) have a great potential in supporting time-critical data delivery among the Internet of Things (IoT) devices and for emerging applications such as smart cities. However, the unique characteristics of different technologies and shared radio operating environment can significantly impact network availability. Hence, in this paper, we study the channel assignment problem in time-critical IoT-based CRNs under proactive jamming attacks. Specifically, we propose a probabilistic spectrum assignment algorithm that aims at minimizing the packet invalidity ratio of each cognitive radio (CR) transmission subject to delay constrains. We exploit the statistical information of licensed users' activities, fading conditions, and jamming attacks over idle channels. Simulation results indicate that network performance can be significantly improved by using a security- availability- and quality-aware channel assignment that provides communicating CR pair with the most secured channel of the lowest invalidity ratio.
Cloud Computing has emerged as a paradigm to deliver on demand resources to facilitate the customers with access to their infrastructure and applications as per their requirements on a subscription basis. An exponential increase in the number of cloud services in the past few years provides more options for customers to choose from. To assist customers in selecting a most trustworthy cloud provider, a unified trust evaluation framework is needed. Trust helps in the estimation of competency of a resource provider in completing a task thus enabling users to select the best resources in the heterogeneous cloud infrastructure. Trust estimates obtained using the AHP process exhibit a deviation for parameters that are not in direct proportion to the contributing attributes. Such deviation can be removed using the Fuzzy AHP model. In this paper, a Fuzzy AHP based hierarchical trust model has been proposed to rate the service providers and their various plans for infrastructure as a service.
Privacy analysis is essential in the society. Data privacy preservation for access control, guaranteed service in wireless sensor networks are important parts. In programs' verification, we not only consider about these kinds of safety and liveness properties but some security policies like noninterference, and observational determinism which have been proposed as hyper properties. Fairness is widely applied in verification for concurrent systems, wireless sensor networks and embedded systems. This paper studies verification and analysis for proving security-relevant properties and hyper properties by proposing deductive proof rules under fairness requirements (constraints).
Since the massive deployment of Cyber-Physical Systems (CPSs) calls for long-range and reliable communication services with manageable cost, it has been believed to be an inevitable trend to relay a significant portion of CPS traffic through existing networking infrastructures such as the Internet. Adversaries who have access to networking infrastructures can therefore eavesdrop network traffic and then perform traffic analysis attacks in order to identify CPS sessions and subsequently launch various attacks. As we can hardly prevent all adversaries from accessing network infrastructures, thwarting traffic analysis attacks becomes indispensable. Traffic morphing serves as an effective means towards this direction. In this paper, a novel traffic morphing algorithm, CPSMorph, is proposed to protect CPS sessions. CPSMorph maintains a number of network sessions whose distributions of inter-packet delays are statistically indistinguishable from those of typical network sessions. A CPS message will be sent through one of these sessions with assured satisfaction of its time constraint. CPSMorph strives to minimize the overhead by dynamically adjusting the morphing process. It is characterized by low complexity as well as high adaptivity to changing dynamics of CPS sessions. Experimental results have shown that CPSMorph can effectively performing traffic morphing for real-time CPS messages with moderate overhead.