Visible to the public Biblio

Filters: Keyword is machine learning algorithm  [Clear All Filters]
2021-09-21
bin Asad, Ashub, Mansur, Raiyan, Zawad, Safir, Evan, Nahian, Hossain, Muhammad Iqbal.  2020.  Analysis of Malware Prediction Based on Infection Rate Using Machine Learning Techniques. 2020 IEEE Region 10 Symposium (TENSYMP). :706–709.
In this modern, technological age, the internet has been adopted by the masses. And with it, the danger of malicious attacks by cybercriminals have increased. These attacks are done via Malware, and have resulted in billions of dollars of financial damage. This makes the prevention of malicious attacks an essential part of the battle against cybercrime. In this paper, we are applying machine learning algorithms to predict the malware infection rates of computers based on its features. We are using supervised machine learning algorithms and gradient boosting algorithms. We have collected a publicly available dataset, which was divided into two parts, one being the training set, and the other will be the testing set. After conducting four different experiments using the aforementioned algorithms, it has been discovered that LightGBM is the best model with an AUC Score of 0.73926.
2020-03-12
Park, Sean, Gondal, Iqbal, Kamruzzaman, Joarder, Zhang, Leo.  2019.  One-Shot Malware Outbreak Detection Using Spatio-Temporal Isomorphic Dynamic Features. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :751–756.

Fingerprinting the malware by its behavioural signature has been an attractive approach for malware detection due to the homogeneity of dynamic execution patterns across different variants of similar families. Although previous researches show reasonably good performance in dynamic detection using machine learning techniques on a large corpus of training set, decisions must be undertaken based upon a scarce number of observable samples in many practical defence scenarios. This paper demonstrates the effectiveness of generative adversarial autoencoder for dynamic malware detection under outbreak situations where in most cases a single sample is available for training the machine learning algorithm to detect similar samples that are in the wild.

2020-02-24
Song, Juncai, Zhao, Jiwen, Dong, Fei, Zhao, Jing, Xu, Liang, Wang, Lijun, Xie, Fang.  2019.  Demagnetization Modeling Research for Permanent Magnet in PMSLM Using Extreme Learning Machine. 2019 IEEE International Electric Machines Drives Conference (IEMDC). :1757–1761.
This paper investigates the temperature demagnetization modeling method for permanent magnets (PM) in permanent magnet synchronous linear motor (PMSLM). First, the PM characteristics are presented, and finite element analysis (FEA) is conducted to show the magnetic distribution under different temperatures. Second, demagnetization degrees and remanence of the five PMs' experiment sample are actually measured in stove at temperatures varying from room temperature to 300 °C, and to obtain the real data for next-step modeling. Third, machine learning algorithm called extreme learning machine (ELM) is introduced to map the nonlinear relationships between temperature and demagnetization characteristics of PM and build the demagnetization models. Finally, comparison experiments between linear modeling method, polynomial modeling method, and ELM can certify the effectiveness and advancement of this proposed method.
2020-02-10
Gao, Hongcan, Zhu, Jingwen, Liu, Lei, Xu, Jing, Wu, Yanfeng, Liu, Ao.  2019.  Detecting SQL Injection Attacks Using Grammar Pattern Recognition and Access Behavior Mining. 2019 IEEE International Conference on Energy Internet (ICEI). :493–498.
SQL injection attacks are a kind of the greatest security risks on Web applications. Much research has been done to detect SQL injection attacks by rule matching and syntax tree. However, due to the complexity and variety of SQL injection vulnerabilities, these approaches fail to detect unknown and variable SQL injection attacks. In this paper, we propose a model, ATTAR, to detect SQL injection attacks using grammar pattern recognition and access behavior mining. The most important idea of our model is to extract and analyze features of SQL injection attacks in Web access logs. To achieve this goal, we first extract and customize Web access log fields from Web applications. Then we design a grammar pattern recognizer and an access behavior miner to obtain the grammatical and behavioral features of SQL injection attacks, respectively. Finally, based on two feature sets, machine learning algorithms, e.g., Naive Bayesian, SVM, ID3, Random Forest, and K-means, are used to train and detect our model. We evaluated our model on these two feature sets, and the results show that the proposed model can effectively detect SQL injection attacks with lower false negative rate and false positive rate. In addition, comparing the accuracy of our model based on different algorithms, ID3 and Random Forest have a better ability to detect various kinds of SQL injection attacks.
2019-02-25
Peng, W., Huang, L., Jia, J., Ingram, E..  2018.  Enhancing the Naive Bayes Spam Filter Through Intelligent Text Modification Detection. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :849–854.

Spam emails have been a chronic issue in computer security. They are very costly economically and extremely dangerous for computers and networks. Despite of the emergence of social networks and other Internet based information exchange venues, dependence on email communication has increased over the years and this dependence has resulted in an urgent need to improve spam filters. Although many spam filters have been created to help prevent these spam emails from entering a user's inbox, there is a lack or research focusing on text modifications. Currently, Naive Bayes is one of the most popular methods of spam classification because of its simplicity and efficiency. Naive Bayes is also very accurate; however, it is unable to correctly classify emails when they contain leetspeak or diacritics. Thus, in this proposes, we implemented a novel algorithm for enhancing the accuracy of the Naive Bayes Spam Filter so that it can detect text modifications and correctly classify the email as spam or ham. Our Python algorithm combines semantic based, keyword based, and machine learning algorithms to increase the accuracy of Naive Bayes compared to Spamassassin by over two hundred percent. Additionally, we have discovered a relationship between the length of the email and the spam score, indicating that Bayesian Poisoning, a controversial topic, is actually a real phenomenon and utilized by spammers.

2018-05-02
Rjoub, G., Bentahar, J..  2017.  Cloud Task Scheduling Based on Swarm Intelligence and Machine Learning. 2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud). :272–279.

Cloud computing is the expansion of parallel computing, distributed computing. The technology of cloud computing becomes more and more widely used, and one of the fundamental issues in this cloud environment is related to task scheduling. However, scheduling in Cloud environments represents a difficult issue since it is basically NP-complete. Thus, many variants based on approximation techniques, especially those inspired by Swarm Intelligence (SI) have been proposed. This paper proposes a machine learning algorithm to guide the cloud choose the scheduling technique by using multi criteria decision to optimize the performance. The main contribution of our work is to minimize the makespan of a given task set. The new strategy is simulated using the CloudSim toolkit package where the impact of the algorithm is checked with different numbers of VMs varying from 2 to 50, and different task sizes between 30 bytes and 2700 bytes. Experiment results show that the proposed algorithm minimizes the execution time and the makespan between 7% and 75%, and improves the performance of the load balancing scheduling.

2017-03-08
Cook, B., Graceffo, S..  2015.  Semi-automated land/water segmentation of multi-spectral imagery. OCEANS 2015 - MTS/IEEE Washington. :1–7.

Segmentation of land and water regions is necessary in many applications involving analysis of remote sensing imagery. Not only is manual segmentation of these regions prone to considerable subjective variability, but the large volume of imagery collected by modern platforms makes manual segmentation extremely tedious to perform, particularly in applications that require frequent re-measurement. This paper examines a robust, semi-automated approach that utilizes simple and efficient machine learning algorithms to perform supervised classification of multi-spectral image data into land and water regions. By combining the four wavelength bands widely available in imaging platforms such as IKONOS, QuickBird, and GeoEye-1 with basic texture metrics, high quality segmentation can be achieved. An efficient workflow was created by constructing a Graphical User Interface (GUI) to these machine learning algorithms.

2015-05-06
Boukhtouta, A., Lakhdari, N.-E., Debbabi, M..  2014.  Inferring Malware Family through Application Protocol Sequences Signature. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-5.

The dazzling emergence of cyber-threats exert today's cyberspace, which needs practical and efficient capabilities for malware traffic detection. In this paper, we propose an extension to an initial research effort, namely, towards fingerprinting malicious traffic by putting an emphasis on the attribution of maliciousness to malware families. The proposed technique in the previous work establishes a synergy between automatic dynamic analysis of malware and machine learning to fingerprint badness in network traffic. Machine learning algorithms are used with features that exploit only high-level properties of traffic packets (e.g. packet headers). Besides, the detection of malicious packets, we want to enhance fingerprinting capability with the identification of malware families responsible in the generation of malicious packets. The identification of the underlying malware family is derived from a sequence of application protocols, which is used as a signature to the family in question. Furthermore, our results show that our technique achieves promising malware family identification rate with low false positives.

Boukhtouta, A., Lakhdari, N.-E., Debbabi, M..  2014.  Inferring Malware Family through Application Protocol Sequences Signature. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-5.

The dazzling emergence of cyber-threats exert today's cyberspace, which needs practical and efficient capabilities for malware traffic detection. In this paper, we propose an extension to an initial research effort, namely, towards fingerprinting malicious traffic by putting an emphasis on the attribution of maliciousness to malware families. The proposed technique in the previous work establishes a synergy between automatic dynamic analysis of malware and machine learning to fingerprint badness in network traffic. Machine learning algorithms are used with features that exploit only high-level properties of traffic packets (e.g. packet headers). Besides, the detection of malicious packets, we want to enhance fingerprinting capability with the identification of malware families responsible in the generation of malicious packets. The identification of the underlying malware family is derived from a sequence of application protocols, which is used as a signature to the family in question. Furthermore, our results show that our technique achieves promising malware family identification rate with low false positives.

2015-05-04
Boukhtouta, A., Lakhdari, N.-E., Debbabi, M..  2014.  Inferring Malware Family through Application Protocol Sequences Signature. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-5.

The dazzling emergence of cyber-threats exert today's cyberspace, which needs practical and efficient capabilities for malware traffic detection. In this paper, we propose an extension to an initial research effort, namely, towards fingerprinting malicious traffic by putting an emphasis on the attribution of maliciousness to malware families. The proposed technique in the previous work establishes a synergy between automatic dynamic analysis of malware and machine learning to fingerprint badness in network traffic. Machine learning algorithms are used with features that exploit only high-level properties of traffic packets (e.g. packet headers). Besides, the detection of malicious packets, we want to enhance fingerprinting capability with the identification of malware families responsible in the generation of malicious packets. The identification of the underlying malware family is derived from a sequence of application protocols, which is used as a signature to the family in question. Furthermore, our results show that our technique achieves promising malware family identification rate with low false positives.