Biblio
Fingerprinting the malware by its behavioural signature has been an attractive approach for malware detection due to the homogeneity of dynamic execution patterns across different variants of similar families. Although previous researches show reasonably good performance in dynamic detection using machine learning techniques on a large corpus of training set, decisions must be undertaken based upon a scarce number of observable samples in many practical defence scenarios. This paper demonstrates the effectiveness of generative adversarial autoencoder for dynamic malware detection under outbreak situations where in most cases a single sample is available for training the machine learning algorithm to detect similar samples that are in the wild.
Spam emails have been a chronic issue in computer security. They are very costly economically and extremely dangerous for computers and networks. Despite of the emergence of social networks and other Internet based information exchange venues, dependence on email communication has increased over the years and this dependence has resulted in an urgent need to improve spam filters. Although many spam filters have been created to help prevent these spam emails from entering a user's inbox, there is a lack or research focusing on text modifications. Currently, Naive Bayes is one of the most popular methods of spam classification because of its simplicity and efficiency. Naive Bayes is also very accurate; however, it is unable to correctly classify emails when they contain leetspeak or diacritics. Thus, in this proposes, we implemented a novel algorithm for enhancing the accuracy of the Naive Bayes Spam Filter so that it can detect text modifications and correctly classify the email as spam or ham. Our Python algorithm combines semantic based, keyword based, and machine learning algorithms to increase the accuracy of Naive Bayes compared to Spamassassin by over two hundred percent. Additionally, we have discovered a relationship between the length of the email and the spam score, indicating that Bayesian Poisoning, a controversial topic, is actually a real phenomenon and utilized by spammers.
Cloud computing is the expansion of parallel computing, distributed computing. The technology of cloud computing becomes more and more widely used, and one of the fundamental issues in this cloud environment is related to task scheduling. However, scheduling in Cloud environments represents a difficult issue since it is basically NP-complete. Thus, many variants based on approximation techniques, especially those inspired by Swarm Intelligence (SI) have been proposed. This paper proposes a machine learning algorithm to guide the cloud choose the scheduling technique by using multi criteria decision to optimize the performance. The main contribution of our work is to minimize the makespan of a given task set. The new strategy is simulated using the CloudSim toolkit package where the impact of the algorithm is checked with different numbers of VMs varying from 2 to 50, and different task sizes between 30 bytes and 2700 bytes. Experiment results show that the proposed algorithm minimizes the execution time and the makespan between 7% and 75%, and improves the performance of the load balancing scheduling.
Segmentation of land and water regions is necessary in many applications involving analysis of remote sensing imagery. Not only is manual segmentation of these regions prone to considerable subjective variability, but the large volume of imagery collected by modern platforms makes manual segmentation extremely tedious to perform, particularly in applications that require frequent re-measurement. This paper examines a robust, semi-automated approach that utilizes simple and efficient machine learning algorithms to perform supervised classification of multi-spectral image data into land and water regions. By combining the four wavelength bands widely available in imaging platforms such as IKONOS, QuickBird, and GeoEye-1 with basic texture metrics, high quality segmentation can be achieved. An efficient workflow was created by constructing a Graphical User Interface (GUI) to these machine learning algorithms.
The dazzling emergence of cyber-threats exert today's cyberspace, which needs practical and efficient capabilities for malware traffic detection. In this paper, we propose an extension to an initial research effort, namely, towards fingerprinting malicious traffic by putting an emphasis on the attribution of maliciousness to malware families. The proposed technique in the previous work establishes a synergy between automatic dynamic analysis of malware and machine learning to fingerprint badness in network traffic. Machine learning algorithms are used with features that exploit only high-level properties of traffic packets (e.g. packet headers). Besides, the detection of malicious packets, we want to enhance fingerprinting capability with the identification of malware families responsible in the generation of malicious packets. The identification of the underlying malware family is derived from a sequence of application protocols, which is used as a signature to the family in question. Furthermore, our results show that our technique achieves promising malware family identification rate with low false positives.
The dazzling emergence of cyber-threats exert today's cyberspace, which needs practical and efficient capabilities for malware traffic detection. In this paper, we propose an extension to an initial research effort, namely, towards fingerprinting malicious traffic by putting an emphasis on the attribution of maliciousness to malware families. The proposed technique in the previous work establishes a synergy between automatic dynamic analysis of malware and machine learning to fingerprint badness in network traffic. Machine learning algorithms are used with features that exploit only high-level properties of traffic packets (e.g. packet headers). Besides, the detection of malicious packets, we want to enhance fingerprinting capability with the identification of malware families responsible in the generation of malicious packets. The identification of the underlying malware family is derived from a sequence of application protocols, which is used as a signature to the family in question. Furthermore, our results show that our technique achieves promising malware family identification rate with low false positives.
The dazzling emergence of cyber-threats exert today's cyberspace, which needs practical and efficient capabilities for malware traffic detection. In this paper, we propose an extension to an initial research effort, namely, towards fingerprinting malicious traffic by putting an emphasis on the attribution of maliciousness to malware families. The proposed technique in the previous work establishes a synergy between automatic dynamic analysis of malware and machine learning to fingerprint badness in network traffic. Machine learning algorithms are used with features that exploit only high-level properties of traffic packets (e.g. packet headers). Besides, the detection of malicious packets, we want to enhance fingerprinting capability with the identification of malware families responsible in the generation of malicious packets. The identification of the underlying malware family is derived from a sequence of application protocols, which is used as a signature to the family in question. Furthermore, our results show that our technique achieves promising malware family identification rate with low false positives.