Visible to the public Biblio

Filters: Keyword is operational technology  [Clear All Filters]
2022-09-09
Kieras, Timothy, Farooq, Muhammad Junaid, Zhu, Quanyan.  2020.  Modeling and Assessment of IoT Supply Chain Security Risks: The Role of Structural and Parametric Uncertainties. 2020 IEEE Security and Privacy Workshops (SPW). :163—170.

Supply chain security threats pose new challenges to security risk modeling techniques for complex ICT systems such as the IoT. With established techniques drawn from attack trees and reliability analysis providing needed points of reference, graph-based analysis can provide a framework for considering the role of suppliers in such systems. We present such a framework here while highlighting the need for a component-centered model. Given resource limitations when applying this model to existing systems, we study various classes of uncertainties in model development, including structural uncertainties and uncertainties in the magnitude of estimated event probabilities. Using case studies, we find that structural uncertainties constitute a greater challenge to model utility and as such should receive particular attention. Best practices in the face of these uncertainties are proposed.

2022-07-12
Pelissero, Nicolas, Laso, Pedro Merino, Jacq, Olivier, Puentes, John.  2021.  Towards modeling of naval systems interdependencies for cybersecurity. OCEANS 2021: San Diego – Porto. :1—7.
To ensure a ship’s fully operational status in a wide spectrum of missions, as passenger transportation, international trade, and military activities, numerous interdependent systems are essential. Despite the potential critical consequences of misunderstanding or ignoring those interdependencies, there are very few documented approaches to enable their identification, representation, analysis, and use. From the cybersecurity point of view, if an anomaly occurs on one of the interdependent systems, it could eventually impact the whole ship, jeopardizing its mission success. This paper presents a proposal to identify the main dependencies of layers within and between generic ship’s functional blocks. An analysis of one of these layers, the platform systems, is developed to examine a naval cyber-physical system (CPS), the water management for passenger use, and its associated dependencies, from an intrinsic perspective. This analysis generates a three layers graph, on which dependencies are represented as oriented edges. Each abstraction level of the graph represents the physical, digital, and system variables of the examined CPS. The obtained result confirms the interest of graphs for dependencies representation and analysis. It is an operational depiction of the different systems interdependencies, on which can rely a cybersecurity evaluation, like anomaly detection and propagation assessment.
2022-06-09
Ude, Okechukwu, Swar, Bobby.  2021.  Securing Remote Access Networks Using Malware Detection Tools for Industrial Control Systems. 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS). :166–171.
With their role as an integral part of its infrastructure, Industrial Control Systems (ICS) are a vital part of every nation's industrial development drive. Despite several significant advancements - such as controlled-environment agriculture, automated train systems, and smart homes, achieved in critical infrastructure sectors through the integration of Information Systems (IS) and remote capabilities with ICS, the fact remains that these advancements have introduced vulnerabilities that were previously either nonexistent or negligible, one being Remote Access Trojans (RATs). Present RAT detection methods either focus on monitoring network traffic or studying event logs on host systems. This research's objective is the detection of RATs by comparing actual utilized system capacity to reported utilized system capacity. To achieve the research objective, open-source RAT detection methods were identified and analyzed, a GAP-analysis approach was used to identify the deficiencies of each method, after which control algorithms were developed into source code for the solution.
2022-04-25
Mubarak, Sinil, Habaebi, Mohamed Hadi, Islam, Md Rafiqul, Khan, Sheroz.  2021.  ICS Cyber Attack Detection with Ensemble Machine Learning and DPI using Cyber-kit Datasets. 2021 8th International Conference on Computer and Communication Engineering (ICCCE). :349–354.

Digitization has pioneered to drive exceptional changes across all industries in the advancement of analytics, automation, and Artificial Intelligence (AI) and Machine Learning (ML). However, new business requirements associated with the efficiency benefits of digitalization are forcing increased connectivity between IT and OT networks, thereby increasing the attack surface and hence the cyber risk. Cyber threats are on the rise and securing industrial networks are challenging with the shortage of human resource in OT field, with more inclination to IT/OT convergence and the attackers deploy various hi-tech methods to intrude the control systems nowadays. We have developed an innovative real-time ICS cyber test kit to obtain the OT industrial network traffic data with various industrial attack vectors. In this paper, we have introduced the industrial datasets generated from ICS test kit, which incorporate the cyber-physical system of industrial operations. These datasets with a normal baseline along with different industrial hacking scenarios are analyzed for research purposes. Metadata is obtained from Deep packet inspection (DPI) of flow properties of network packets. DPI analysis provides more visibility into the contents of OT traffic based on communication protocols. The advancement in technology has led to the utilization of machine learning/artificial intelligence capability in IDS ICS SCADA. The industrial datasets are pre-processed, profiled and the abnormality is analyzed with DPI. The processed metadata is normalized for the easiness of algorithm analysis and modelled with machine learning-based latest deep learning ensemble LSTM algorithms for anomaly detection. The deep learning approach has been used nowadays for enhanced OT IDS performances.

2022-03-22
O’Toole, Sean, Sewell, Cameron, Mehrpouyan, Hoda.  2021.  IoT Security and Safety Testing Toolkits for Water Distribution Systems. 2021 8th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1—8.

Due to the critical importance of Industrial Control Systems (ICS) to the operations of cities and countries, research into the security of critical infrastructure has become increasingly relevant and necessary. As a component of both the research and application sides of smart city development, accurate and precise modeling, simulation, and verification are key parts of a robust design and development tools that provide critical assistance in the prevention, detection, and recovery from abnormal behavior in the sensors, controllers, and actuators which make up a modern ICS system. However, while these tools have potential, there is currently a need for helper-tools to assist with their setup and configuration, if they are to be utilized widely. Existing state-of-the-art tools are often technically complex and difficult to customize for any given IoT/ICS processes. This is a serious barrier to entry for most technicians, engineers, researchers, and smart city planners, while slowing down the critical aspects of safety and security verification. To remedy this issue, we take a case study of existing simulation toolkits within the field of water management and expand on existing tools and algorithms with simplistic automated retrieval functionality using a much more in-depth and usable customization interface to accelerate simulation scenario design and implementation, allowing for customization of the cyber-physical network infrastructure and cyber attack scenarios. We additionally provide a novel in-tool-assessment of network’s resilience according to graph theory path diversity. Further, we lay out a roadmap for future development and application of the proposed tool, including expansions on resiliency and potential vulnerability model checking, and discuss applications of our work to other fields relevant to the design and operation of smart cities.

2020-11-09
Muller, T., Walz, A., Kiefer, M., Doran, H. Dermot, Sikora, A..  2018.  Challenges and prospects of communication security in real-time ethernet automation systems. 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS). :1–9.
Real-Time Ethernet has become the major communication technology for modern automation and industrial control systems. On the one hand, this trend increases the need for an automation-friendly security solution, as such networks can no longer be considered sufficiently isolated. On the other hand, it shows that, despite diverging requirements, the domain of Operational Technology (OT) can derive advantage from high-volume technology of the Information Technology (IT) domain. Based on these two sides of the same coin, we study the challenges and prospects of approaches to communication security in real-time Ethernet automation systems. In order to capitalize the expertise aggregated in decades of research and development, we put a special focus on the reuse of well-established security technology from the IT domain. We argue that enhancing such technology to become automation-friendly is likely to result in more robust and secure designs than greenfield designs. Because of its widespread deployment and the (to this date) nonexistence of a consistent security architecture, we use PROFINET as a showcase of our considerations. Security requirements for this technology are defined and different well-known solutions are examined according their suitability for PROFINET. Based on these findings, we elaborate the necessary adaptions for the deployment on PROFINET.
2020-07-06
Hasan, Kamrul, Shetty, Sachin, Hassanzadeh, Amin, Ullah, Sharif.  2019.  Towards Optimal Cyber Defense Remediation in Cyber Physical Systems by Balancing Operational Resilience and Strategic Risk. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–8.

A prioritized cyber defense remediation plan is critical for effective risk management in cyber-physical systems (CPS). The increased integration of Information Technology (IT)/Operational Technology (OT) in CPS has to lead to the need to identify the critical assets which, when affected, will impact resilience and safety. In this work, we propose a methodology for prioritized cyber risk remediation plan that balances operational resilience and economic loss (safety impacts) in CPS. We present a platform for modeling and analysis of the effect of cyber threats and random system faults on the safety of CPS that could lead to catastrophic damages. We propose to develop a data-driven attack graph and fault graph-based model to characterize the exploitability and impact of threats in CPS. We develop an operational impact assessment to quantify the damages. Finally, we propose the development of a strategic response decision capability that proposes optimal mitigation actions and policies that balances the trade-off between operational resilience (Tactical Risk) and Strategic Risk.