Visible to the public Biblio

Filters: Keyword is consensus mechanism  [Clear All Filters]
2023-01-13
Peng, Chunying, Xu, Haixia, Li, Peili.  2022.  Redactable Blockchain Using Lattice-based Chameleon Hash Function. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :94–98.
Blockchain as a tamper-proof, non-modifiable and traceable distributed ledger technology has received extensive attention. Although blockchain's immutability provides security guarantee, it prevents the development of new blockchain technology. As we think, there are several arguments to prefer a controlled modifiable blockchain, from the possibility to cancel the transaction and necessity to remove the illicit or harmful documents, to the ability to support the scalability of blockchain. Meanwhile, the rapid development of quantum technology has made the establishment of post-quantum cryptosystems an urgent need. In this paper, we put forward the first lattice-based redactable consortium blockchain scheme that makes it possible to rewrite or repeal the content of any blocks. Our approach uses a consensus-based election and lattice-based chameleon hash function (Cash and Hofheinz etc. EUROCRYPT 2010). With knowledge of secret trapdoor, the participant could find the hash collisions efficiently. And each member of the consortium blockchain has the right to edit the history.
2022-04-18
Sun, Chuang, Shen, Sujin.  2021.  An Improved Byzantine Consensus Based Multi-Signature Algorithm. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :777–780.
Traditional grid-centric data storage methods are vulnerable to network attacks or failures due to downtime, causing problems such as data loss or tampering. The security of data storage can be effectively improved by establishing an alliance chain. However, the existing consortium chain consensus algorithm has low scalability, and the consensus time will explode as the number of nodes increases. This paper proposes an improved consensus algorithm (MSBFT) based on multi-signature to address this problem, which spreads data by establishing a system communication tree, reducing communication and network transmission costs, and improving system scalability. By generating schnorr multi-signature as the shared signature of system nodes, the computational cost of verification between nodes is reduced. At the end of the article, simulations prove the superiority of the proposed method.
2021-08-11
Li, Shanghao, He, Shan, Li, Lin, Guo, Donghui.  2020.  IP Trading System with Blockchain on Web-EDA. 2020 IEEE 14th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :164—168.
As the scale of integrated circuits continues to expand, electronic design automation (EDA) and intellectual property (IP) reuse play an increasingly important role in the integrated circuit design process. Although many Web-EDA platforms have begun to provide online EDA software to reduce the threshold for the use of EDA tools, IP protection on the Web- EDA platform is an issue. This article uses blockchain technology to design an IP trading system for the Web-EDA platform to achieve mutual trust and transactions between IP owners and users. The structure of the IP trading system is described in detail, and a blockchain wallet for the Web-EDA platform is developed.
2020-09-28
Li, Qiuxiang, Liu, Zhiyu, Chen, Yanru, Gong, Gangjun, Yang, Sheng, Mahato, Nawaraj Kumar.  2019.  Energy Data Security and Multi-Source Coordination Mechanism Based on Blockchain. 2019 IEEE Sustainable Power and Energy Conference (iSPEC). :1979–1983.
Energy is the material basis for human society to survive and has a very important strategic position in the national economy. With the advancement of Internet technology and the extensive use of clean energy, the energy industry has demonstrated a new development trend. Based on blockchain technology, this paper analyzes energy data security and multi-source synergy mechanism, processes and classifies a large amount of energy data in energy system, and builds a blockchain-based energy data supervision and transaction model. A summary tree of energy data is proposed; a consensus mechanism based on multi-source collaboration is proposed to ensure efficient negotiation; and finally, blockchain is verified in the energy scenario. This provides reference for the application of blockchain technology in the energy industry.
2020-07-30
Yang, Fan, Shi, Yue, Wu, Qingqing, Li, Fei, Zhou, Wei, Hu, Zhiyan, Xiong, Naixue, Zhang, Yong.  2019.  The Survey on Intellectual Property Based on Blockchain Technology. 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). :743—748.
The characteristics of decentralization, tamper-resistance and transaction anonymity of blockchain can resolve effectively the problems in traditional intellectual property such as the difficulty of electronic obtaining for evidence, the high cost and low compensation when safeguarding the copyrights. Blockchain records the information through encryption algorithm, removes the third party, and stores the information in all nodes to prevent the information from being tampered with, so as to realize the protection of intellectual property. Starting from the bottom layer of blockchain, this paper expounds in detail the characteristics and the technical framework of blockchain. At the same time, according to the existing problems in transaction throughput, time delay and resource consumption of blockchain system, optimization mechanisms such as cross-chain and proof of stake are analyzed. Finally, combined with the characteristics of blockchain technology and existing application framework, this paper summarizes the existing problems in the industry and forecasts the development trend of intellectual property based on blockchain technology.