Biblio
This paper presents a control strategy for Cyber-Physical System defense developed in the framework of the European Project ATENA, that concerns Critical Infrastructure (CI) protection. The aim of the controller is to find the optimal security configuration, in terms of countermeasures to implement, in order to address the system vulnerabilities. The attack/defense problem is modeled as a multi-agent general sum game, where the aim of the defender is to prevent the most damage possible by finding an optimal trade-off between prevention actions and their costs. The problem is solved utilizing Reinforcement Learning and simulation results provide a proof of the proposed concept, showing how the defender of the protected CI is able to minimize the damage caused by his her opponents by finding the Nash equilibrium of the game in the zero-sum variant, and, in a more general scenario, by driving the attacker in the position where the damage she/he can cause to the infrastructure is lower than the cost it has to sustain to enforce her/his attack strategy.
Deception has been widely considered in literature as an effective means of enhancing security protection when the defender holds some private information about the ongoing rivalry unknown to the attacker. However, most of the existing works on deception assume static environments and thus consider only myopic deception, while practical security games between the defender and the attacker may happen in dynamic scenarios. To better exploit the defender's private information in dynamic environments and improve security performance, a stochastic deception game (SDG) framework is developed in this work to enable the defender to conduct foresighted deception. To solve the proposed SDG, a new iterative algorithm that is provably convergent is developed. A corresponding learning algorithm is developed as well to facilitate the defender in conducting foresighted deception in unknown dynamic environments. Numerical results show that the proposed foresighted deception can offer a substantial performance improvement as compared to the conventional myopic deception.
Establishing a secret and reliable wireless communication is a challenging task that is of paramount importance. In this paper, we investigate the physical layer security of a legitimate transmission link between a user that assists an Intrusion Detection System (IDS) in detecting eavesdropping and jamming attacks in the presence of an adversary that is capable of conducting an eavesdropping or a jamming attack. The user is being faced by a challenge of whether to transmit, thus becoming vulnerable to an eavesdropping or a jamming attack, or to keep silent and consequently his/her transmission will be delayed. The adversary is also facing a challenge of whether to conduct an eavesdropping or a jamming attack that will not get him/her to be detected. We model the interactions between the user and the adversary as a two-state stochastic game. Explicit solutions characterize some properties while highlighting some interesting strategies that are being embraced by the user and the adversary. Results show that our proposed system outperform current systems in terms of communication secrecy.
Preserving the availability and integrity of networked computing systems in the face of fast-spreading intrusions requires advances not only in detection algorithms, but also in automated response techniques. In this paper, we propose a new approach to automated response called the response and recovery engine (RRE). Our engine employs a game-theoretic response strategy against adversaries modeled as opponents in a two-player Stackelberg stochastic game. The RRE applies attack-response trees (ART) to analyze undesired system-level security events within host computers and their countermeasures using Boolean logic to combine lower level attack consequences. In addition, the RRE accounts for uncertainties in intrusion detection alert notifications. The RRE then chooses optimal response actions by solving a partially observable competitive Markov decision process that is automatically derived from attack-response trees. To support network-level multiobjective response selection and consider possibly conflicting network security properties, we employ fuzzy logic theory to calculate the network-level security metric values, i.e., security levels of the system's current and potentially future states in each stage of the game. In particular, inputs to the network-level game-theoretic response selection engine, are first fed into the fuzzy system that is in charge of a nonlinear inference and quantitative ranking of the possible actions using its previously defined fuzzy rule set. Consequently, the optimal network-level response actions are chosen through a game-theoretic optimization process. Experimental results show that the RRE, using Snort's alerts, can protect large networks for which attack-response trees have more than 500 nodes.