Visible to the public Biblio

Filters: Keyword is network intrusion detection  [Clear All Filters]
2022-03-01
ZHU, Guowei, YUAN, Hui, ZHUANG, Yan, GUO, Yue, ZHANG, Xianfei, QIU, Shuang.  2021.  Research on Network Intrusion Detection Method of Power System Based on Random Forest Algorithm. 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :374–379.
Aiming at the problem of low detection accuracy in traditional power system network intrusion detection methods, in order to improve the performance of power system network intrusion detection, a power system network intrusion detection method based on random forest algorithm is proposed. Firstly, the power system network intrusion sub sample is selected to construct the random forest decision tree. The random forest model is optimized by using the edge function. The accuracy of the vector is judged by the minimum state vector of the power system network, and the measurement residual of the power system network attack is calculated. Finally, the power system network intrusion data set is clustered by Gaussian mixture clustering Through the design of power system network intrusion detection process, the power system network intrusion detection is realized. The experimental results show that the power system network intrusion detection method based on random forest algorithm has high network intrusion detection performance.
Ding, Shanshuo, Wang, Yingxin, Kou, Liang.  2021.  Network Intrusion Detection Based on BiSRU and CNN. 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS). :145–147.
In recent years, with the continuous development of artificial intelligence algorithms, their applications in network intrusion detection have become more and more widespread. However, as the network speed continues to increase, network traffic increases dramatically, and the drawbacks of traditional machine learning methods such as high false alarm rate and long training time are gradually revealed. CNN(Convolutional Neural Networks) can only extract spatial features of data, which is obviously insufficient for network intrusion detection. In this paper, we propose an intrusion detection model that combines CNN and BiSRU (Bi-directional Simple Recurrent Unit) to achieve the goal of intrusion detection by processing network traffic logs. First, we extract the spatial features of the original data using CNN, after that we use them as input, further extract the temporal features using BiSRU, and finally output the classification results by softmax to achieve the purpose of intrusion detection.
Zhao, Ruijie, Li, Zhaojie, Xue, Zhi, Ohtsuki, Tomoaki, Gui, Guan.  2021.  A Novel Approach Based on Lightweight Deep Neural Network for Network Intrusion Detection. 2021 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
With the ubiquitous network applications and the continuous development of network attack technology, all social circles have paid close attention to the cyberspace security. Intrusion detection systems (IDS) plays a very important role in ensuring computer and communication systems security. Recently, deep learning has achieved a great success in the field of intrusion detection. However, the high computational complexity poses a major hurdle for the practical deployment of DL-based models. In this paper, we propose a novel approach based on a lightweight deep neural network (LNN) for IDS. We design a lightweight unit that can fully extract data features while reducing the computational burden by expanding and compressing feature maps. In addition, we use inverse residual structure and channel shuffle operation to achieve more effective training. Experiment results show that our proposed model for intrusion detection not only reduces the computational cost by 61.99% and the model size by 58.84%, but also achieves satisfactory accuracy and detection rate.
Jingyi, Wu, Xusheng, Gan, Jieli, Huang, Shenghou, Li.  2021.  ELM Network Intrusion Detection Model Based on SLPP Feature Extraction. 2021 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :46–49.
To improve the safety precaution level of network system, a combined network intrusion detection method is proposed based on Supervised Locality Preserving Projections (SLPP) feature extraction and Extreme Learning Machine (ELM). In this method, the feature extraction capability of SLPP is first used to reduce the dimensionality of the original network connection and system audit data, and get a feature set, then, based on this, the advantages of ELM in pattern recognition is adopted to build a network intrusion detection model for detecting and determining intrusion behavior. Simulation results show that, under the same experiment conditions, compared with traditional neural networks and support vector machines, the proposed method has more advantages in training efficiency and generalization performance.
Sapre, Suchet, Islam, Khondkar, Ahmadi, Pouyan.  2021.  A Comprehensive Data Sampling Analysis Applied to the Classification of Rare IoT Network Intrusion Types. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–2.
With the rapid growth of Internet of Things (IoT) network intrusion attacks, there is a critical need for sophisticated and comprehensive intrusion detection systems (IDSs). Classifying infrequent intrusion types such as root-to-local (R2L) and user-to-root (U2R) attacks is a reoccurring problem for IDSs. In this study, various data sampling and class balancing techniques-Generative Adversarial Network (GAN)-based oversampling, k-nearest-neighbor (kNN) oversampling, NearMiss-1 undersampling, and class weights-were used to resolve the severe class imbalance affecting U2R and R2L attacks in the NSL-KDD intrusion detection dataset. Artificial Neural Networks (ANNs) were trained on the adjusted datasets, and their performances were evaluated with a multitude of classification metrics. Here, we show that using no data sampling technique (baseline), GAN-based oversampling, and NearMiss-l undersampling, all with class weights, displayed high performances in identifying R2L and U2R attacks. Of these, the baseline with class weights had the highest overall performance with an F1-score of 0.11 and 0.22 for the identification of U2R and R2L attacks, respectively.
2022-02-22
Zhou, Tianyang.  2021.  Performance comparison and optimization of mainstream NIDS systems in offline mode based on parallel processing technology. 2021 2nd International Conference on Computing and Data Science (CDS). :136—140.
For the network intrusion detection system (NIDS), improving the performance of the analysis process has always been one of the primary goals that NIDS needs to solve. An important method to improve performance is to use parallel processing technology to maximize the usage of multi-core CPU resources. In this paper, by splitting Pcap data packets, the NIDS software Snort3 can process Pcap packets in parallel mode. On this basis, this paper compares the performance between Snort2, Suricata, and Snort3 with different CPU cores in processing different sizes of Pcap data packets. At the same time, a parallel unpacking algorithm is proposed to further improve the parallel processing performance of Snort3.
2022-02-07
Khalifa, Marwa Mohammed, Ucan, Osman Nuri, Ali Alheeti, Khattab M..  2021.  New Intrusion Detection System to Protect MANET Networks Employing Machine Learning Techniques. 2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI). :1–6.
The Intrusion Detection System (IDS) is one of the technologies available to protect mobile ad hoc networks. The system monitors the network and detects intrusion from malicious nodes, aiming at passive (eavesdropping) or positive attack to disrupt the network. This paper proposes a new Intrusion detection system using three Machine Learning (ML) techniques. The ML techniques were Random Forest (RF), support vector machines (SVM), and Naïve Bayes(NB) were used to classify nodes in MANET. The data set was generated by the simulator network simulator-2 (NS-2). The routing protocol was used is Dynamic Source Routing (DSR). The type of IDS used is a Network Intrusion Detection System (NIDS). The dataset was pre-processed, then split into two subsets, 67% for training and 33% for testing employing Python Version 3.8.8. Obtaining good results for RF, SVM and NB when applied randomly selected features in the trial and error method from the dataset to improve the performance of the IDS and reduce time spent for training and testing. The system showed promising results, especially with RF, where the accuracy rate reached 100%.
Todorov, Z., Efnusheva, D., Nikolic, T..  2021.  FPGA Implementation of Computer Network Security Protection with Machine Learning. 2021 IEEE 32nd International Conference on Microelectronics (MIEL). :263–266.
Network intrusion detection systems (NIDS) are widely used solutions targeting the security of any network device connected to the Internet and are taking the lead in the battle against intruders. This paper addresses the network security issues by implementing a hardware-based NIDS solution with a Naïve Bayes machine learning (ML) algorithm for classification using NSL Knowledge Discovery in Databases (KDD) dataset. The proposed FPGA implementation of the Naive Bayes classifier focuses on low latency and provides intrusion detection in just 240ns, with accuracy/precision of 70/97%, occupying 1 % of the Virtex7 VC709 FPGA chip area.
2022-01-10
Zheng, Shiji.  2021.  Network Intrusion Detection Model Based on Convolutional Neural Network. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:634–637.
Network intrusion detection is an important research direction of network security. The diversification of network intrusion mode and the increasing amount of network data make the traditional detection methods can not meet the requirements of the current network environment. The development of deep learning technology and its successful application in the field of artificial intelligence provide a new solution for network intrusion detection. In this paper, the convolutional neural network in deep learning is applied to network intrusion detection, and an intelligent detection model which can actively learn is established. The experiment on KDD99 data set shows that it can effectively improve the accuracy and adaptive ability of intrusion detection, and has certain effectiveness and advancement.
2021-12-21
Ayed, Mohamed Ali, Talhi, Chamseddine.  2021.  Federated Learning for Anomaly-Based Intrusion Detection. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–8.
We are attending a severe zero-day cyber attacks. Machine learning based anomaly detection is definitely the most efficient defence in depth approach. It consists to analyzing the network traffic in order to distinguish the normal behaviour from the abnormal one. This approach is usually implemented in a central server where all the network traffic is analyzed which can rise privacy issues. In fact, with the increasing adoption of Cloud infrastructures, it is important to reduce as much as possible the outsourcing of such sensitive information to the several network nodes. A better approach is to ask each node to analyze its own data and then to exchange its learning finding (model) with a coordinator. In this paper, we investigate the application of federated learning for network-based intrusion detection. Our experiment was conducted based on the C ICIDS2017 dataset. We present a f ederated learning on a deep learning algorithm C NN based on model averaging. It is a self-learning system for detecting anomalies caused by malicious adversaries without human intervention and can cope with new and unknown attacks without decreasing performance. These experimentation demonstrate that this approach is effective in detecting intrusion.
2021-09-07
Zhang, Xing, Cui, Xiaotong, Cheng, Kefei, Zhang, Liang.  2020.  A Convolutional Encoder Network for Intrusion Detection in Controller Area Networks. 2020 16th International Conference on Computational Intelligence and Security (CIS). :366–369.
Integrated with various electronic control units (ECUs), vehicles are becoming more intelligent with the assistance of essential connections. However, the interaction with the outside world raises great concerns on cyber-attacks. As a main standard for in-vehicle network, Controller Area Network (CAN) does not have any built-in security mechanisms to guarantee a secure communication. This increases risks of denial of service, remote control attacks by an attacker, posing serious threats to underlying vehicles, property and human lives. As a result, it is urgent to develop an effective in-vehicle network intrusion detection system (IDS) for better security. In this paper, we propose a Feature-based Sliding Window (FSW) to extract the feature of CAN Data Field and CAN IDs. Then we construct a convolutional encoder network (CEN) to detect network intrusion of CAN networks. The proposed FSW-CEN method is evaluated on real-world datasets. The experimental results show that compared to traditional data processing methods and convolutional neural networks, our method is able to detect attacks with a higher accuracy in terms of detection accuracy and false negative rate.
2021-05-25
Karimov, Madjit, Tashev, Komil, Rustamova, Sanobar.  2020.  Application of the Aho-Corasick algorithm to create a network intrusion detection system. 2020 International Conference on Information Science and Communications Technologies (ICISCT). :1—5.
One of the main goals of studying pattern matching techniques is their significant role in real-world applications, such as the intrusion detection systems branch. The purpose of the network attack detection systems NIDS is to protect the infocommunication network from unauthorized access. This article provides an analysis of the exact match and fuzzy matching methods, and discusses a new implementation of the classic Aho-Korasik pattern matching algorithm at the hardware level. The proposed approach to the implementation of the Aho-Korasik algorithm can make it possible to ensure the efficient use of resources, such as memory and energy.
2021-03-29
Peng, Y., Fu, G., Luo, Y., Hu, J., Li, B., Yan, Q..  2020.  Detecting Adversarial Examples for Network Intrusion Detection System with GAN. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :6–10.
With the increasing scale of network, attacks against network emerge one after another, and security problems become increasingly prominent. Network intrusion detection system is a widely used and effective security means at present. In addition, with the development of machine learning technology, various intelligent intrusion detection algorithms also start to sprout. By flexibly combining these intelligent methods with intrusion detection technology, the comprehensive performance of intrusion detection can be improved, but the vulnerability of machine learning model in the adversarial environment can not be ignored. In this paper, we study the defense problem of network intrusion detection system against adversarial samples. More specifically, we design a defense algorithm for NIDS against adversarial samples by using bidirectional generative adversarial network. The generator learns the data distribution of normal samples during training, which is an implicit model reflecting the normal data distribution. After training, the adversarial sample detection module calculates the reconstruction error and the discriminator matching error of sample. Then, the adversarial samples are removed, which improves the robustness and accuracy of NIDS in the adversarial environment.
2021-03-04
Hashemi, M. J., Keller, E..  2020.  Enhancing Robustness Against Adversarial Examples in Network Intrusion Detection Systems. 2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :37—43.

The increase of cyber attacks in both the numbers and varieties in recent years demands to build a more sophisticated network intrusion detection system (NIDS). These NIDS perform better when they can monitor all the traffic traversing through the network like when being deployed on a Software-Defined Network (SDN). Because of the inability to detect zero-day attacks, signature-based NIDS which were traditionally used for detecting malicious traffic are beginning to get replaced by anomaly-based NIDS built on neural networks. However, recently it has been shown that such NIDS have their own drawback namely being vulnerable to the adversarial example attack. Moreover, they were mostly evaluated on the old datasets which don't represent the variety of attacks network systems might face these days. In this paper, we present Reconstruction from Partial Observation (RePO) as a new mechanism to build an NIDS with the help of denoising autoencoders capable of detecting different types of network attacks in a low false alert setting with an enhanced robustness against adversarial example attack. Our evaluation conducted on a dataset with a variety of network attacks shows denoising autoencoders can improve detection of malicious traffic by up to 29% in a normal setting and by up to 45% in an adversarial setting compared to other recently proposed anomaly detectors.

2021-02-23
Park, S. H., Park, H. J., Choi, Y..  2020.  RNN-based Prediction for Network Intrusion Detection. 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :572—574.
We investigate a prediction model using RNN for network intrusion detection in industrial IoT environments. For intrusion detection, we use anomaly detection methods that estimate the next packet, measure and score the distance measurement in real packets to distinguish whether it is a normal packet or an abnormal packet. When the packet was learned in the LSTM model, two-gram and sliding window of N-gram showed the best performance in terms of errors and the performance of the LSTM model was the highest compared with other data mining regression techniques. Finally, cosine similarity was used as a scoring function, and anomaly detection was performed by setting a boundary for cosine similarity that consider as normal packet.
Al-Emadi, S., Al-Mohannadi, A., Al-Senaid, F..  2020.  Using Deep Learning Techniques for Network Intrusion Detection. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT). :171—176.
In recent years, there has been a significant increase in network intrusion attacks which raises a great concern from the privacy and security aspects. Due to the advancement of the technology, cyber-security attacks are becoming very complex such that the current detection systems are not sufficient enough to address this issue. Therefore, an implementation of an intelligent and effective network intrusion detection system would be crucial to solve this problem. In this paper, we use deep learning techniques, namely, Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) to design an intelligent detection system which is able to detect different network intrusions. Additionally, we evaluate the performance of the proposed solution using different evaluation matrices and we present a comparison between the results of our proposed solution to find the best model for the network intrusion detection system.
Ashraf, S., Ahmed, T..  2020.  Sagacious Intrusion Detection Strategy in Sensor Network. 2020 International Conference on UK-China Emerging Technologies (UCET). :1—4.
Almost all smart appliances are operated through wireless sensor networks. With the passage of time, due to various applications, the WSN becomes prone to various external attacks. Preventing such attacks, Intrusion Detection strategy (IDS) is very crucial to secure the network from the malicious attackers. The proposed IDS methodology discovers the pattern in large data corpus which works for different types of algorithms to detect four types of Denial of service (DoS) attacks, namely, Grayhole, Blackhole, Flooding, and TDMA. The state-of-the-art detection algorithms, such as KNN, Naïve Bayes, Logistic Regression, Support Vector Machine (SVM), and ANN are applied to the data corpus and analyze the performance in detecting the attacks. The analysis shows that these algorithms are applicable for the detection and prediction of unavoidable attacks and can be recommended for network experts and analysts.
Liu, J., Xiao, K., Luo, L., Li, Y., Chen, L..  2020.  An intrusion detection system integrating network-level intrusion detection and host-level intrusion detection. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). :122—129.
With the rapid development of Internet, the issue of cyber security has increasingly gained more attention. An intrusion Detection System (IDS) is an effective technique to defend cyber-attacks and reduce security losses. However, the challenge of IDS lies in the diversity of cyber-attackers and the frequently-changing data requiring a flexible and efficient solution. To address this problem, machine learning approaches are being applied in the IDS field. In this paper, we propose an efficient scalable neural-network-based hybrid IDS framework with the combination of Host-level IDS (HIDS) and Network-level IDS (NIDS). We applied the autoencoders (AE) to NIDS and designed HIDS using word embedding and convolutional neural network. To evaluate the IDS, many experiments are performed on the public datasets NSL-KDD and ADFA. It can detect many attacks and reduce the security risk with high efficiency and excellent scalability.
Chen, W., Cao, H., Lv, X., Cao, Y..  2020.  A Hybrid Feature Extraction Network for Intrusion Detection Based on Global Attention Mechanism. 2020 International Conference on Computer Information and Big Data Applications (CIBDA). :481—485.
The widespread application of 5G will make intrusion detection of large-scale network traffic a mere need. However, traditional intrusion detection cannot meet the requirements by manually extracting features, and the existing AI methods are also relatively inefficient. Therefore, when performing intrusion detection tasks, they have significant disadvantages of high false alarm rates and low recognition performance. For this challenge, this paper proposes a novel hybrid network, RULA-IDS, which can perform intrusion detection tasks by great amount statistical data from the network monitoring system. RULA-IDS consists of the fully connected layer, the feature extraction layer, the global attention mechanism layer and the SVM classification layer. In the feature extraction layer, the residual U-Net and LSTM are used to extract the spatial and temporal features of the network traffic attributes. It is worth noting that we modified the structure of U-Net to suit the intrusion detection task. The global attention mechanism layer is then used to selectively retain important information from a large number of features and focus on those. Finally, the SVM is used as a classifier to output results. The experimental results show that our method outperforms existing state-of-the-art intrusion detection methods, and the accuracies of training and testing are improved to 97.01% and 98.19%, respectively, and presents stronger robustness during training and testing.
Kumar, M., Singh, A. K..  2020.  Distributed Intrusion Detection System using Blockchain and Cloud Computing Infrastructure. 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184). :248—252.
Intrusion Detection System is a well-known term in the domain of Network and Information Security. It's one of the important components of the Network and Information Security infrastructure. Host Intrusion Detection System (HIDS) helps to detect unauthorized use, abnormal and malicious activities on the host, whereas Network Intrusion Detection System (NIDS) helps to detect attacks and intrusion on networks. Various researchers are actively working on different approaches to improving the IDS performance and many improvements have been achieved. However, development in many other technologies and newly emerging techniques always opens the doors of opportunity to add a sharp edge to IDS and to make it more robust and reliable. This paper proposes the development of Distributed Intrusion Detection System (DIDS) using emerging and promising technologies like Blockchain upon a stable platform like cloud infrastructure.
Liao, D., Huang, S., Tan, Y., Bai, G..  2020.  Network Intrusion Detection Method Based on GAN Model. 2020 International Conference on Computer Communication and Network Security (CCNS). :153—156.

The existing network intrusion detection methods have less label samples in the training process, and the detection accuracy is not high. In order to solve this problem, this paper designs a network intrusion detection method based on the GAN model by using the adversarial idea contained in the GAN. The model enhances the original training set by continuously generating samples, which expanding the label sample set. In order to realize the multi-classification of samples, this paper transforms the previous binary classification model of the generated adversarial network into a supervised learning multi-classification model. The loss function of training is redefined, so that the corresponding training method and parameter setting are obtained. Under the same experimental conditions, several performance indicators are used to compare the detection ability of the proposed method, the original classification model and other models. The experimental results show that the method proposed in this paper is more stable, robust, accurate detection rate, has good generalization ability, and can effectively realize network intrusion detection.

Shah, A., Clachar, S., Minimair, M., Cook, D..  2020.  Building Multiclass Classification Baselines for Anomaly-based Network Intrusion Detection Systems. 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA). :759—760.
This paper showcases multiclass classification baselines using different machine learning algorithms and neural networks for distinguishing legitimate network traffic from direct and obfuscated network intrusions. This research derives its baselines from Advanced Security Network Metrics & Tunneling Obfuscations dataset. The dataset captured legitimate and obfuscated malicious TCP communications on selected vulnerable network services. The multiclass classification NIDS is able to distinguish obfuscated and direct network intrusion with up to 95% accuracy.
2021-02-03
Liu, H., Zhou, Z., Zhang, M..  2020.  Application of Optimized Bidirectional Generative Adversarial Network in ICS Intrusion Detection. 2020 Chinese Control And Decision Conference (CCDC). :3009—3014.

Aiming at the problem that the traditional intrusion detection method can not effectively deal with the massive and high-dimensional network traffic data of industrial control system (ICS), an ICS intrusion detection strategy based on bidirectional generative adversarial network (BiGAN) is proposed in this paper. In order to improve the applicability of BiGAN model in ICS intrusion detection, the optimal model was obtained through the single variable principle and cross-validation. On this basis, the supervised control and data acquisition (SCADA) standard data set is used for comparative experiments to verify the performance of the optimized model on ICS intrusion detection. The results show that the ICS intrusion detection method based on optimized BiGAN has higher accuracy and shorter detection time than other methods.

2020-12-28
Hussain, M. S., Khan, K. U. R..  2020.  Network-based Anomaly Intrusion Detection System in MANETS. 2020 Fourth International Conference on Inventive Systems and Control (ICISC). :881—886.

In the communication model of wired and wireless Adhoc networks, the most needed requirement is the integration of security. Mobile Adhoc networks are more aroused with the attacks compared to the wired environment. Subsequently, the characteristics of Mobile Adhoc networks are also influenced by the vulnerability. The pre-existing unfolding solutions are been obtained for infrastructure-less networks. However, these solutions are not always necessarily suitable for wireless networks. Further, the framework of wireless Adhoc networks has uncommon vulnerabilities and due to this behavior it is not protected by the same solutions, therefore the detection mechanism of intrusion is combinedly used to protect the Manets. Several intrusion detection techniques that have been developed for a fixed wired network cannot be applied in this new environment. Furthermore, The issue of intensity in terms of energy is of a major kind due to which the life of the working battery is very limited. The objective this research work is to detect the Anomalous behavior of nodes in Manet's and Experimental analysis is done by making use of Network Simulator-2 to do the comparative analysis for the existing algorithm, we enhanced the previous algorithm in order to improve the Energy efficiency and results shown the improvement of energy of battery life and Throughput is checked with respect to simulation of test case analysis. In this paper, the proposed algorithm is compared with the existing approach.

2020-11-20
Roy, D. D., Shin, D..  2019.  Network Intrusion Detection in Smart Grids for Imbalanced Attack Types Using Machine Learning Models. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :576—581.
Smart grid has evolved as the next generation power grid paradigm which enables the transfer of real time information between the utility company and the consumer via smart meter and advanced metering infrastructure (AMI). These information facilitate many services for both, such as automatic meter reading, demand side management, and time-of-use (TOU) pricing. However, there have been growing security and privacy concerns over smart grid systems, which are built with both smart and legacy information and operational technologies. Intrusion detection is a critical security service for smart grid systems, alerting the system operator for the presence of ongoing attacks. Hence, there has been lots of research conducted on intrusion detection in the past, especially anomaly-based intrusion detection. Problems emerge when common approaches of pattern recognition are used for imbalanced data which represent much more data instances belonging to normal behaviors than to attack ones, and these approaches cause low detection rates for minority classes. In this paper, we study various machine learning models to overcome this drawback by using CIC-IDS2018 dataset [1].