Biblio
Control room video surveillance is an important source of information for ensuring public safety. To facilitate the process, a Decision-Support System (DSS) designed for the security task force is vital and necessary to take decisions rapidly using a sea of information. In case of mission critical operation, Situational Awareness (SA) which consists of knowing what is going on around you at any given time plays a crucial role across a variety of industries and should be placed at the center of our DSS. In our approach, SA system will take advantage of the human factor thanks to the reinforcement signal whereas previous work on this field focus on improving knowledge level of DSS at first and then, uses the human factor only for decision-making. In this paper, we propose a situational awareness-centric decision-support system framework for mission-critical operations driven by Quality of Experience (QoE). Our idea is inspired by the reinforcement learning feedback process which updates the environment understanding of our DSS. The feedback is injected by a QoE built on user perception. Our approach will allow our DSS to evolve according to the context with an up-to-date SA.
FastChain is a simulator built in NS-3 which simulates the networked battlefield scenario with military applications, connecting tankers, soldiers and drones to form Internet-of-Battlefield-Things (IoBT). Computing, storage and communication resources in IoBT are limited during certain situations in IoBT. Under these circumstances, these resources should be carefully combined to handle the task to accomplish the mission. FastChain simulator uses Sharding approach to provide an efficient solution to combine resources of IoBT devices by identifying the correct and the best set of IoBT devices for a given scenario. Then, the set of IoBT devices for a given scenario collaborate together for sharding enabled Blockchain technology. Interested researchers, policy makers and developers can download and use the FastChain simulator to design, develop and evaluate blockchain enabled IoBT scenarios that helps make robust and trustworthy informed decisions in mission-critical IoBT environment.
Cyber-physical systems are an integral component of weapons, sensors and autonomous vehicles, as well as cyber assets directly supporting tactical forces. Mission resilience of tactical networks affects command and control, which is important for successful military operations. Traditional engineering methods for mission assurance will not scale during battlefield operations. Commanders need useful mission resilience metrics to help them evaluate the ability of cyber assets to recover from incidents to fulfill mission essential functions. We develop 6 cyber resilience metrics for tactical network architectures. We also illuminate how psychometric modeling is necessary for future research to identify resilience metrics that are both applicable to the dynamic mission state and meaningful to commanders and planners.