Visible to the public Biblio

Filters: Keyword is virtual machine  [Clear All Filters]
2022-09-16
G.A, Senthil, Prabha, R., Pomalar, A., Jancy, P. Leela, Rinthya, M..  2021.  Convergence of Cloud and Fog Computing for Security Enhancement. 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :1—6.
Cloud computing is a modern type of service that provides each consumer with a large-scale computing tool. Different cyber-attacks can potentially target cloud computing systems, as most cloud computing systems offer services to so many people who are not known to be trustworthy. Therefore, to protect that Virtual Machine from threats, a cloud computing system must incorporate some security monitoring framework. There is a tradeoff between the security level of the security system and the performance of the system in this scenario. If a strong security is required then a stronger security service using more rules or patterns should be incorporated and then in proportion to the strength of security, it needs much more computing resources. So the amount of resources allocated to customers is decreasing so this research work will introduce a new way of security system in cloud environments to the VM in this research. The main point of Fog computing is to part of the cloud server's work in the ongoing study tells the step-by-step cloud server to change gigantic information measurement because the endeavor apps are relocated to the cloud to keep the framework cost. So the cloud server is devouring and changing huge measures of information step by step so it is rented to keep up the problem and additionally get terrible reactions in a horrible device environment. Cloud computing and Fog computing approaches were combined in this paper to review data movement and safe information about MDHC.
2022-09-09
Liu, Xu, Fang, Dongxu, Xu, Peng.  2021.  Automated Performance Benchmarking Platform of IaaS Cloud. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1402—1405.
With the rapid development of cloud computing, IaaS (Infrastructure as a Service) becomes more and more popular. IaaS customers may not clearly know the actual performance of each cloud platform. Moreover, there are no unified standards in performance evaluation of IaaS VMs (virtual machine). The underlying virtualization technology of IaaS cloud is transparent to customers. In this paper, we will design an automated performance benchmarking platform which can automatically install, configure and execute each benchmarking tool with a configuration center. This platform can easily visualize multidimensional benchmarking parameters data of each IaaS cloud platform. We also rented four IaaS VMs from AliCloud-Beijing, AliCloud-Qingdao, UCloud and Huawei to validate our benchmarking system. Performance comparisons of multiple parameters between multiple platforms were shown in this paper. However, in practice, customers' applications running on VMs are often complex. Performance of complex applications may not depend on single benchmarking parameter (e.g. CPU, memory, disk I/O etc.). We ran a TPC-C test for example to get overall performance in MySQL application scenario. The effects of different benchmarking parameters differ in this specific scenario.
Perucca, A., Thai, T. T., Fiasca, F., Signorile, G., Formichella, V., Sesia, I., Levi, F..  2021.  Network and Software Architecture Improvements for a Highly Automated, Robust and Efficient Realization of the Italian National Time Scale. 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS). :1—4.
Recently, the informatics infrastructure of INRiM Time and Frequency Laboratory has been completely renewed with particular attention to network security and software architecture aspects, with the aims to improve the reliability, robustness and automation of the overall set-up. This upgraded infrastructure has allowed, since January 2020, a fully automated generation and monitoring of the Italian time scale UTC(IT), based on dedicated software developed in-house [1]. We focus in this work on the network and software aspects of our set-up, which enable a robust and reliable automatic time scale generation with continuous monitoring and minimal human intervention.
2022-08-26
Chinnasamy, P., Vinothini, B., Praveena, V., Subaira, A.S., Ben Sujitha, B..  2021.  Providing Resilience on Cloud Computing. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1—4.
In Cloud Computing, a wide range of virtual platforms are integrated and offer users a flexible pay-as-you-need service. Compared to conventional computing systems, the provision of an acceptable degree of resilience to cloud services is a daunting challenge due to the complexities of the cloud environment and the need for efficient technology that could sustain cloud advantages over other technologies. For a cloud guest resilience service solution, we provide architectural design, installation specifics, and performance outcomes throughout this article. Virtual Machine Manager (VMM) enables execution statistical test of the virtual machine states to be monitored and avoids to reach faulty states.
Wulf, Cornelia, Willig, Michael, Göhringer, Diana.  2021.  A Survey on Hypervisor-based Virtualization of Embedded Reconfigurable Systems. 2021 31st International Conference on Field-Programmable Logic and Applications (FPL). :249–256.
The increase of size, capabilities, and speed of FPGAs enables the shared usage of reconfigurable resources by multiple applications and even operating systems. While research on FPGA virtualization in HPC-datacenters and cloud is already well advanced, it is a rather new concept for embedded systems. The necessity for FPGA virtualization of embedded systems results from the trend to integrate multiple environments into the same hardware platform. As multiple guest operating systems with different requirements, e.g., regarding real-time, security, safety, or reliability share the same resources, the focus of research lies on isolation under the constraint of having minimal impact on the overall system. Drivers for this development are, e.g., computation intensive AI-based applications in the automotive or medical field, embedded 5G edge computing systems, or the consolidation of electronic control units (ECUs) on a centralized MPSoC with the goal to increase reliability by reducing complexity. This survey outlines key concepts of hypervisor-based virtualization of embedded reconfigurable systems. Hypervisor approaches are compared and classified into FPGA-based hypervisors, MPSoC-based hypervisors and hypervisors for distributed embedded reconfigurable systems. Strong points and limitations are pointed out and future trends for virtualization of embedded reconfigurable systems are identified.
2022-05-12
Marian, Constantin Viorel.  2021.  DNS Records Secure Provisioning Mechanism for Virtual Machines automatic management in high density data centers. 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :1–5.

Nowadays is becoming trivial to have multiple virtual machines working in parallel on hardware platforms with high processing power. This appropriate cost effective approach can be found at Internet Service Providers, in cloud service providers’ environments, in research and development lab testing environment (for example Universities’ student’s lab), in virtual application for security evaluation and in many other places. In the aforementioned cases, it is often necessary to start and/or stop virtual machines on the fly. In cloud service providers all the creation / tear down actions are triggered by a customer request and cannot be postponed or delayed for later evaluation. When a new virtual machine is created, it is imperative to assign unique IP addresses to all network interfaces and also domain name system DNS records that contain text based data, IP addresses, etc. Even worse, if a virtual machine has to be stopped or torn down, the critical network resources such as IP addresses and DNS records have to be carefully controlled in order to avoid IP addresses conflicts and name resolution problems between an old virtual machine and a newly created virtual machine. This paper proposes a provisioning mechanism to avoid both DNS records and IP addresses conflicts due to human misconfiguration, problems that can cause networking operation service disruptions.

2021-09-16
Ullman, Steven, Samtani, Sagar, Lazarine, Ben, Zhu, Hongyi, Ampel, Benjamin, Patton, Mark, Chen, Hsinchun.  2020.  Smart Vulnerability Assessment for Scientific Cyberinfrastructure: An Unsupervised Graph Embedding Approach. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1–6.
The accelerated growth of computing technologies has provided interdisciplinary teams a platform for producing innovative research at an unprecedented speed. Advanced scientific cyberinfrastructures, in particular, provide data storage, applications, software, and other resources to facilitate the development of critical scientific discoveries. Users of these environments often rely on custom developed virtual machine (VM) images that are comprised of a diverse array of open source applications. These can include vulnerabilities undetectable by conventional vulnerability scanners. This research aims to identify the installed applications, their vulnerabilities, and how they vary across images in scientific cyberinfrastructure. We propose a novel unsupervised graph embedding framework that captures relationships between applications, as well as vulnerabilities identified on corresponding GitHub repositories. This embedding is used to cluster images with similar applications and vulnerabilities. We evaluate cluster quality using Silhouette, Calinski-Harabasz, and Davies-Bouldin indices, and application vulnerabilities through inspection of selected clusters. Results reveal that images pertaining to genomics research in our research testbed are at greater risk of high-severity shell spawning and data validation vulnerabilities.
2021-07-08
Sato, Masaya, Taniguchi, Hideo, Nakamura, Ryosuke.  2020.  Virtual Machine Monitor-based Hiding Method for Access to Debug Registers. 2020 Eighth International Symposium on Computing and Networking (CANDAR). :209—214.
To secure a guest operating system running on a virtual machine (VM), a monitoring method using hardware breakpoints by a virtual machine monitor is required. However, debug registers are visible to guest operating systems; thus, malicious programs on a guest operating system can detect or disable the monitoring method. This paper presents a method to hide access to debug registers from programs running on a VM. Our proposed method detects programs' access to debug registers and disguises the access as having succeeded. The register's actual value is not visible or modifiable to programs, so the monitoring method is hidden. This paper presents the basic design and evaluation results of our method.
Lu, Yujun, Gao, BoYu, Long, Jinyi, Weng, Jian.  2020.  Hand Motion with Eyes-free Interaction for Authentication in Virtual Reality. 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). :714—715.
Designing an authentication method is a crucial component to secure privacy in information systems. Virtual Reality (VR) is a new interaction platform, in which the users can interact with natural behaviours (e.g. hand, gaze, head, etc.). In this work, we propose a novel authentication method in which user can perform hand motion in an eyes-free manner. We evaluate the usability and security between eyes-engage and eyes-free input with a pilot study. The initial result revealed our purposed method can achieve a trade-off between usability and security, showing a new way to behaviour-based authentication in VR.
Dovgalyuk, Pavel, Vasiliev, Ivan, Fursova, Natalia, Dmitriev, Denis, Abakumov, Mikhail, Makarov, Vladimir.  2020.  Non-intrusive Virtual Machine Analysis and Reverse Debugging with SWAT. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). :196—203.
This paper presents SWAT - System-Wide Analysis Toolkit. It is based on open source emulation and debugging projects and implements the approaches for non-intrusive system-wide analysis and debugging: lightweight OS-agnostic virtual machine introspection, full system execution replay, non-intrusive debugging with WinDbg, and full system reverse debugging. These features are based on novel non-intrusive introspection and reverse debugging methods. They are useful for stealth debugging and analysis of the platforms with custom kernels. SWAT includes multi-platform emulator QEMU with additional instrumentation and debugging features, GUI for convenient QEMU setup and execution, QEMU plugin for non-intrusive introspection, and modified version of GDB. Our toolkit may be useful for the developers of the virtual platforms, emulators, and firmwares/drivers/operating systems. Virtual machine intospection approach does not require loading any guest agents and source code of the OS. Therefore it may be applied to ROM-based guest systems and enables using of record/replay of the system execution. This paper includes the description of SWAT components, analysis methods, and some SWAT use cases.
Talbot, Joshua, Pikula, Przemek, Sweetmore, Craig, Rowe, Samuel, Hindy, Hanan, Tachtatzis, Christos, Atkinson, Robert, Bellekens, Xavier.  2020.  A Security Perspective on Unikernels. 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1—7.
Cloud-based infrastructures have grown in popularity over the last decade leveraging virtualisation, server, storage, compute power and network components to develop flexible applications. The requirements for instantaneous deployment and reduced costs have led the shift from virtual machine deployment to containerisation, increasing the overall flexibility of applications and increasing performances. However, containers require a fully fleshed operating system to execute, increasing the attack surface of an application. Unikernels, on the other hand, provide a lightweight memory footprint, ease of application packaging and reduced start-up times. Moreover, Unikernels reduce the attack surface due to the self-contained environment only enabling low-level features. In this work, we provide an exhaustive description of the unikernel ecosystem; we demonstrate unikernel vulnerabilities and further discuss the security implications of Unikernel-enabled environments through different use-cases.
Flores, Hugo, Tran, Vincent, Tang, Bin.  2020.  PAM PAL: Policy-Aware Virtual Machine Migration and Placement in Dynamic Cloud Data Centers. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :2549—2558.
We focus on policy-aware data centers (PADCs), wherein virtual machine (VM) traffic traverses a sequence of middleboxes (MBs) for security and performance purposes, and propose two new VM placement and migration problems. We first study PAL: policy-aware virtual machine placement. Given a PADC with a data center policy that communicating VM pairs must satisfy, the goal of PAL is to place the VMs into the PADC to minimize their total communication cost. Due to dynamic traffic loads in PADCs, however, above VM placement may no longer be optimal after some time. We thus study PAM: policy-aware virtual machine migration. Given an existing VM placement in the PADC and dynamic traffic rates among communicating VMs, PAM migrates VMs in order to minimize the total cost of migration and communication of the VM pairs. We design optimal, approximation, and heuristic policyaware VM placement and migration algorithms. Our experiments show that i) VM migration is an effective technique, reducing total communication cost of VM pairs by 25%, ii) our PAL algorithms outperform state-of-the-art VM placement algorithm that is oblivious to data center policies by 40-50%, and iii) our PAM algorithms outperform the only existing policy-aware VM migration scheme by 30%.
Long, Vu Duc, Duong, Ta Nguyen Binh.  2020.  Group Instance: Flexible Co-Location Resistant Virtual Machine Placement in IaaS Clouds. 2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE). :64—69.
This paper proposes and analyzes a new virtual machine (VM) placement technique called Group Instance to deal with co-location attacks in public Infrastructure-as-a-Service (IaaS) clouds. Specifically, Group Instance organizes cloud users into groups with pre-determined sizes set by the cloud provider. Our empirical results obtained via experiments with real-world data sets containing million of VM requests have demonstrated the effectiveness of the new technique. In particular, the advantages of Group Instance are three-fold: 1) it is simple and highly configurable to suit the financial and security needs of cloud providers, 2) it produces better or at least similar performance compared to more complicated, state-of-the-art algorithms in terms of resource utilization and co-location security, and 3) it does not require any modifications to the underlying infrastructures of existing public cloud services.
Long, Saiqin, Li, Zhetao, Xing, Yun, Tian, Shujuan, Li, Dongsheng, Yu, Rong.  2020.  A Reinforcement Learning-Based Virtual Machine Placement Strategy in Cloud Data Centers. :223—230.
{With the widespread use of cloud computing, energy consumption of cloud data centers is increasing which mainly comes from IT equipment and cooling equipment. This paper argues that once the number of virtual machines on the physical machines reaches a certain level, resource competition occurs, resulting in a performance loss of the virtual machines. Unlike most papers, we do not impose placement constraints on virtual machines by giving a CPU cap to achieve the purpose of energy savings in cloud data centers. Instead, we use the measure of performance loss to weigh. We propose a reinforcement learning-based virtual machine placement strategy(RLVMP) for energy savings in cloud data centers. The strategy considers the weight of virtual machine performance loss and energy consumption, which is finally solved with the greedy strategy. Simulation experiments show that our strategy has a certain improvement in energy savings compared with the other algorithms.
Chaturvedi, Amit Kumar, Kumar, Punit, Sharma, Kalpana.  2020.  Proposing Innovative Intruder Detection System for Host Machines in Cloud Computing. 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART). :292—296.
There is very significant role of Virtualization in cloud computing. The physical hardware in the cloud computing reside with the host machine and the virtualization software runs on it. The virtualization allows virtual machines to exist. The host machine shares its physical components such as memory, storage, and processor ultimately to handle the needs of the virtual machines. If an attacker effectively compromises one VM, it could outbreak others on the same host on the network over long periods of time. This is an gradually more popular method for cross-virtual-machine attacks, since traffic between VMs cannot be examined by standard IDS/IPS software programs. As we know that the cloud environment is distributed in nature and hence more susceptible to various types of intrusion attacks which include installing malicious software and generating backdoors. In a cloud environment, where organizations have hosted important and critical data, the security of underlying technologies becomes critical. To alleviate the hazard to cloud environments, Intrusion Detection Systems (IDS) are a cover of defense. In this paper, we are proposing an innovative model for Intrusion Detection System for securing Host machines in cloud infrastructure. This proposed IDS has two important features: (1) signature based and (2) prompt alert system.
SANE, Bernard Ousmane, BA, Mandicou, FALL, Doudou, KASHIHARA, Shigeru, TAENAKA, Yuzo, NIANG, Ibrahima, Kadobayashi, Youki.  2020.  Solving the Interdependency Problem: A Secure Virtual Machine Allocation Method Relying on the Attacker’s Efficiency and Coverage. 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). :440—449.
Cloud computing dominates the information communication and technology landscape despite the presence of lingering security issues such as the interdependency problem. The latter is a co-residence conundrum where the attacker successfully compromises his target virtual machine by first exploiting the weakest (in terms of security) virtual machine that is hosted in the same server. To tackle this issue, we propose a novel virtual machine allocation policy that is based on the attacker's efficiency and coverage. By default, our allocation policy considers all legitimate users as attackers and then proceeds to host the users' virtual machines to the server where their efficiency and/or coverage are the smallest. Our simulation results show that our proposal performs better than the existing allocation policies that were proposed to tackle the same issue, by reducing the attacker's possibilities to zero and by using between 30 - 48% less hosts.
2021-07-07
Al-hamouri, Rahaf, Al-Jarrah, Heba, Al-Sharif, Ziad A., Jararweh, Yaser.  2020.  Measuring the Impacts of Virtualization on the Performance of Thread-Based Applications. 2020 Seventh International Conference on Software Defined Systems (SDS). :131–138.
The following topics are dealt with: cloud computing; software defined networking; cryptography; telecommunication traffic; Internet of Things; authorisation; software radio; cryptocurrencies; data privacy; learning (artificial intelligence).
2021-04-09
Fadhilah, D., Marzuki, M. I..  2020.  Performance Analysis of IDS Snort and IDS Suricata with Many-Core Processor in Virtual Machines Against Dos/DDoS Attacks. 2020 2nd International Conference on Broadband Communications, Wireless Sensors and Powering (BCWSP). :157—162.
The rapid development of technology makes it possible for a physical machine to be converted into a virtual machine, which can operate multiple operating systems that are running simultaneously and connected to the internet. DoS/DDoS attacks are cyber-attacks that can threaten the telecommunications sector because these attacks cause services to be disrupted and be difficult to access. There are several software tools for monitoring abnormal activities on the network, such as IDS Snort and IDS Suricata. From previous studies, IDS Suricata is superior to IDS Snort version 2 because IDS Suricata already supports multi-threading, while IDS Snort version 2 still only supports single-threading. This paper aims to conduct tests on IDS Snort version 3.0 which already supports multi-threading and IDS Suricata. This research was carried out on a virtual machine with 1 core, 2 core, and 4 core processor settings for CPU, memory, and capture packet attacks on IDS Snort version 3.0 and IDS Suricata. The attack scenario is divided into 2 parts: DoS attack scenario using 1 physical computer, and DDoS attack scenario using 5 physical computers. Based on overall testing, the results are: In general, IDS Snort version 3.0 is better than IDS Suricata. This is based on the results when using a maximum of 4 core processor, in which IDS Snort version 3.0 CPU usage is stable at 55% - 58%, a maximum memory of 3,000 MB, can detect DoS attacks with 27,034,751 packets, and DDoS attacks with 36,919,395 packets. Meanwhile, different results were obtained by IDS Suricata, in which CPU usage is better compared to IDS Snort version 3.0 with only 10% - 40% usage, and a maximum memory of 1,800 MB. However, the capabilities of detecting DoS attacks are smaller with 3,671,305 packets, and DDoS attacks with a total of 7,619,317 packets on a TCP Flood attack test.
2021-03-04
Moustafa, N., Keshky, M., Debiez, E., Janicke, H..  2020.  Federated TONİoT Windows Datasets for Evaluating AI-Based Security Applications. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :848—855.

Existing cyber security solutions have been basically developed using knowledge-based models that often cannot trigger new cyber-attack families. With the boom of Artificial Intelligence (AI), especially Deep Learning (DL) algorithms, those security solutions have been plugged-in with AI models to discover, trace, mitigate or respond to incidents of new security events. The algorithms demand a large number of heterogeneous data sources to train and validate new security systems. This paper presents the description of new datasets, the so-called ToNİoT, which involve federated data sources collected from Telemetry datasets of IoT services, Operating system datasets of Windows and Linux, and datasets of Network traffic. The paper introduces the testbed and description of TONİoT datasets for Windows operating systems. The testbed was implemented in three layers: edge, fog and cloud. The edge layer involves IoT and network devices, the fog layer contains virtual machines and gateways, and the cloud layer involves cloud services, such as data analytics, linked to the other two layers. These layers were dynamically managed using the platforms of software-Defined Network (SDN) and Network-Function Virtualization (NFV) using the VMware NSX and vCloud NFV platform. The Windows datasets were collected from audit traces of memories, processors, networks, processes and hard disks. The datasets would be used to evaluate various AI-based cyber security solutions, including intrusion detection, threat intelligence and hunting, privacy preservation and digital forensics. This is because the datasets have a wide range of recent normal and attack features and observations, as well as authentic ground truth events. The datasets can be publicly accessed from this link [1].

2021-02-10
Kishimoto, K., Taniguchi, Y., Iguchi, N..  2020.  A Practical Exercise System Using Virtual Machines for Learning Cross-Site Scripting Countermeasures. 2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan). :1—2.

Cross-site scripting (XSS) is an often-occurring major attack that developers should consider when developing web applications. We develop a system that can provide practical exercises for learning how to create web applications that are secure against XSS. Our system utilizes free software and virtual machines, allowing low-cost, safe, and practical exercises. By using two virtual machines as the web server and the attacker host, the learner can conduct exercises demonstrating both XSS countermeasures and XSS attacks. In our system, learners use a web browser to learn and perform exercises related to XSS. Experimental evaluations confirm that the proposed system can support learning of XSS countermeasures.

2020-10-26
Li, Huhua, Zhan, Dongyang, Liu, Tianrui, Ye, Lin.  2019.  Using Deep-Learning-Based Memory Analysis for Malware Detection in Cloud. 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW). :1–6.
Malware is one of the biggest threats in cloud computing. Malware running inside virtual machines or containers could steal critical information or continue to attack other cloud nodes. To detect malware in cloud, especially zero-day malware, signature-and machine-learning-based approaches are proposed to analyze the execution binary. However, malicious binary files may not permanently be stored in the file system of virtual machine or container, periodically scanner may not find the target files. Dynamic analysis approach usually introduce run-time overhead to virtual machines, which is not widely used in cloud. To solve these problems, we propose a memory analysis approach to detect malware, employing the deep learning technology. The system analyzes the memory image periodically during malware execution, which will not introduce run-time overhead. We first extract the memory snapshot from running virtual machines or containers. Then, the snapshot is converted to a grayscale image. Finally, we employ CNN to detect malware. In the learning phase, malicious and benign software are trained. In the testing phase, we test our system with real-world malwares.
Chen, Cheng-Yu, Hsiao, Shun-Wen.  2019.  IoT Malware Dynamic Analysis Profiling System and Family Behavior Analysis. 2019 IEEE International Conference on Big Data (Big Data). :6013–6015.
Not only the number of deployed IoT devices increases but also that of IoT malware increases. We eager to understand the threat made by IoT malware but we lack tools to observe, analyze and detect them. We design and implement an automatic, virtual machine-based profiling system to collect valuable IoT malware behavior, such as API call invocation, system call execution, etc. In addition to conventional profiling methods (e.g., strace and packet capture), the proposed profiling system adapts virtual machine introspection based API hooking technique to intercept API call invocation by malware, so that our introspection would not be detected by IoT malware. We then propose a method to convert the multiple sequential data (API calls) to a family behavior graph for further analysis.
2020-09-04
Zhang, Xiao, Wang, Yanqiu, Wang, Qing, Zhao, Xiaonan.  2019.  A New Approach to Double I/O Performance for Ceph Distributed File System in Cloud Computing. 2019 2nd International Conference on Data Intelligence and Security (ICDIS). :68—75.
Block storage resources are essential in an Infrastructure-as-a-Service(IaaS) cloud computing system. It is used for storing virtual machines' images. It offers persistent storage service even the virtual machine is off. Distribute storage systems are used to provide block storage services in IaaS, such as Amazon EBS, Cinder, Ceph, Sheepdog. Ceph is widely used as the backend block storage service of OpenStack platform. It converts block devices into objects with the same size and saves them on the local file system. The performance of block devices provided by Ceph is only 30% of hard disks in many cases. One of the key issues that affect the performance of Ceph is the three replicas for fault tolerance. But our research finds that replicas are not the real reason slow down the performance. In this paper, we present a new approach to accelerate the IO operations. The experiment results show that by using our storage engine, Ceph can offer faster IO performance than the hard disk in most cases. Our new storage engine provides more than three times up than the original one.
2020-04-17
Liu, Sihang, Wei, Yizhou, Chi, Jianfeng, Shezan, Faysal Hossain, Tian, Yuan.  2019.  Side Channel Attacks in Computation Offloading Systems with GPU Virtualization. 2019 IEEE Security and Privacy Workshops (SPW). :156—161.

The Internet of Things (IoT) and mobile systems nowadays are required to perform more intensive computation, such as facial detection, image recognition and even remote gaming, etc. Due to the limited computation performance and power budget, it is sometimes impossible to perform these workloads locally. As high-performance GPUs become more common in the cloud, offloading the computation to the cloud becomes a possible choice. However, due to the fact that offloaded workloads from different devices (belonging to different users) are being computed in the same cloud, security concerns arise. Side channel attacks on GPU systems have been widely studied, where the threat model is the attacker and the victim are running on the same operating system. Recently, major GPU vendors have provided hardware and library support to virtualize GPUs for better isolation among users. This work studies the side channel attacks from one virtual machine to another where both share the same physical GPU. We show that it is possible to infer other user's activities in this setup and can further steal others deep learning model.

2020-03-09
ELMAARADI, Ayoub, LYHYAOUI, Abdelouahid, CHAIRI, IKRAM.  2019.  New security architecture using hybrid IDS for virtual private clouds. 2019 Third International Conference on Intelligent Computing in Data Sciences (ICDS). :1–5.

We recently see a real digital revolution where all companies prefer to use cloud computing because of its capability to offer a simplest way to deploy the needed services. However, this digital transformation has generated different security challenges as the privacy vulnerability against cyber-attacks. In this work we will present a new architecture of a hybrid Intrusion detection System, IDS for virtual private clouds, this architecture combines both network-based and host-based intrusion detection system to overcome the limitation of each other, in case the intruder bypassed the Network-based IDS and gained access to a host, in intend to enhance security in private cloud environments. We propose to use a non-traditional mechanism in the conception of the IDS (the detection engine). Machine learning, ML algorithms will can be used to build the IDS in both parts, to detect malicious traffic in the Network-based part as an additional layer for network security, and also detect anomalies in the Host-based part to provide more privacy and confidentiality in the virtual machine. It's not in our scope to train an Artificial Neural Network ”ANN”, but just to propose a new scheme for IDS based ANN, In our future work we will present all the details related to the architecture and parameters of the ANN, as well as the results of some real experiments.