Biblio
The nodes in Mobile Ad hoc Network (MANET) can self-assemble themselves, locomote unreservedly and can interact with one another without taking any help from a centralized authority or fixed infrastructure. Due to its continuously changing and self-organizing nature, MANET is vulnerable to a variety of attacks like spoofing attack, wormhole attack, black hole attack, etc. This paper compares and analyzes the repercussion of the wormhole attack on MANET's two common routing protocols of reactive category, specifically, Dynamic Source Routing (DSR) and Ad-hoc On-Demand Distance Vector (AODV) by increasing the number of wormhole tunnels in MANET. The results received by simulation will reveal that DSR is greatly affected by this attack. So, as a solution, a routing algorithm for DSR which is based on trust is proposed to prevent the routes from caching malicious nodes.
Mobile Adhoc Network (MANET) are the networks where network nodes uses wireless links to transfer information from one node to another without making use of existing infrastructure. There is no node in the network to control and coordinate establishment of connections between the network nodes. Hence the network nodes performs dual function of both node as well as router. Due to dynamically changing network scenarios, absence of centralization and lack of resources, MANETs have a threat of large number of security attacks. Hence security attacks need to be evaluated in order to find effective methods to avoid or remove them. In this paper malicious behavior of Blackhole attack and Rushing attack is studied and analyzed for QoS metrics.
The increasing demand and the use of mobile ad hoc network (MANET) in recent days have attracted the attention of researchers towards pursuing active research work largely related to security attacks in MANET. Gray hole attack is one of the most common security attacks observed in MANET. The paper focuses on gray hole attack analysis in Ad hoc on demand distance vector(AODV) routing protocol based MANET with reliability as a metric. Simulation is performed using ns-2.35 simulation software under varying number of network nodes and varying number of gray hole nodes. Results of simulation indicates that increasing the number of gray hole node in the MANET will decrease the reliability of MANET.
In Mobile Ad hoc Networks (MANET) the nodes act as a host as well as a router thereby forming a self-organizing network that does not rely upon fixed infrastructure, other than gateways to other networks. MANET provides a quick to deploy flexible networking capability with a dynamic topology due to node mobility. MANET nodes transmit, relay and receive traffic from neighbor nodes as the network topology changes. Security is important for MANET and trust computation is used to improve collaboration between nodes. MANET trust frameworks utilize real-time trust computations to maintain the trust state for nodes in the network. If the trust computation is not resilient against attack, the trust values computed could be unreliable. This paper proposes an Artificial Immune System based approach to compute trust and thereby provide a resilient reputation mechanism.
This paper presents a contemporary review of communication architectures and topographies for MANET-connected Internet-of-Things (IoT) systems. Routing protocols for multi-hop MANETs are analyzed with a focus on the standardized Routing Protocol for Low-power and Lossy Networks. Various security threats and vulnerabilities in current MANET routing are described and security enhanced routing protocols and trust models presented as methodologies for supporting secure routing. Finally, the paper identifies some key research challenges in the emerging domain of MANET-IoT connectivity.
There are two types of network architectures are presents those are wired network and wireless network. MANETs is one of the examples of wireless network. Each and every network has their own features which make them different from other types of network. Some of the features of MANETs are; infrastructure less network, mobility, dynamic network topology which make it different and more popular from wired network but these features also generate different problems for achieving security due to the absence of centralized authority inside network as well as sending of data due to its mobility features. Achieving security in wired network is little-bit easy compare to MANETs because in wired network user need to just protect main centralized authority for achieving security whereas in MANETs there is no centralized authority available so protecting server in MANETs is difficult compare to wired network. Data sending and receiving process is also easy in wired network but mobility features makes this data sending and receiving process difficult in MANETs. Protecting server or central repository without making use of secrete sharing in wired network will create so many challenges and problem in terms of security. The proposed system makes use of Secrete sharing method to protect server from malicious nodes and `A New particle Swarm Optimization Method for MANETs' (NPSOM) for performing data sending and receiving operation in optimization way. NPSOM technique get equated with the steady particle swarm optimizer (PSO) technique. PSO was essentially designed by Kennedy, Eberhart in 1995. These methods are based upon 4 dissimilar types of parameters. These techniques were encouraged by common performance of animals, some of them are bird assembling and fish tuition, ant colony. The proposed system converts this PSO in the form of MANETs where Particle is nothing but the nodes in the network, Swarm means collection of multiple nodes and Optimization means finding the best and nearer root to reach to destination. Each and every element study about their own previous best solution which they are having with them for the given optimization problem, likewise they see for the groups previous best solution which they got for the same problem and finally they correct its solution depending on these values. This same process gets repeated for finding of the best and optimal solutions value. NPSOM technique, used in proposed system there every element changes its location according to the solution which they got previously and which is poorest as well as their collection's earlier poorest solution for finding best, optimal value. In this proposed system we are concentrating on, sidestepping element's and collections poorest solution which they got before.
Due to the changing nature of Mobile Ad-Hoc Network (MANET) security is an important concern and hence in this paper, we carryout vector-based trust mechanism, which is established on the behavior of nodes in forwarding and dropping the data packets determines the trust on each node and we are using the Enhanced Certificate Revocation scheme (ECR), which avoid the attacker by blacklisting the blackhole attacker. To enhance more security for node and network, we assign a unique key for every individual node which can avoid most of the attacks in MANET
Mobile Ad-hoc Network (MANET) is an autonomous collection of mobile nodes and communicate among them in their radio range. It is an infrastructure less, bandwidth constraint multi-hop wireless network. A various routing protocol is being evolved for MANET routing and also provide security mechanism to avoid security threads. Dynamic Source Routing (DSR), one of the popular reactive routing protocols for MANET, establishes path between source to destination before data communication take place using route request (RREQ) and route reply (RREP) control messages. Although in [1] authors propose to prevent route diversion due to a malicious node in the network using group Diffie-Hellman (GDH) key management applied over source address, but if any intermediate trusted node start to misbehave then there is no prevention mechanism. Here in this paper, we applied Hash function scheme over destination address to identify the misbehaving intermediate node that can provide wrong destination address. The path information towards the destination sent by the intermediate node through RREP is exactly for the intended required destination or not, here we can identified according to our proposed algorithm and pretend for further data transmission. Our proposed algorithm proves the authenticity of the destination and also prevent from misbehaving intermediate nodes.
Nowadays, The incorporation of different function of the network, as well as routing, administration, and security, is basic to the effective operation of a mobile circumstantial network these days, in MANET thought researchers manages the problems of QoS and security severally. Currently, each the aspects of security and QoS influence negatively on the general performance of the network once thought-about in isolation. In fact, it will influence the exceptionally operating of QoS and security algorithms and should influence the important and essential services needed within the MANET. Our paper outlines 2 accomplishments via; the accomplishment of security and accomplishment of quality. The direction towards achieving these accomplishments is to style and implement a protocol to suite answer for policy-based network administration, and methodologies for key administration and causing of IPsec in a very MANET.
Vehicular Ad-Hoc Network, or VANETs, is a form of MANET, through which cars will exchange messages to detect dangerous situations and announce them to drivers. In VANETs, vehicles (nodes) are characterized by a high dynamics and high mobility, in addition to the high rate of topology change and density variability. Quality of service in VANETs represents a major challenge, not yet solved, due to the characteristics and strict constraints of VANETs. In order to improve the performance and reliability of message dissemination on VANETs, congestion control must be taken into account. Many studies asserted that proper congestion control algorithms are essential to ensure an efficient network operation. However, most of the existing congestion control solutions have limitations. In this paper, we propose congestion control algorithm as solution to avoid congestion in VANETs environment. The proposed solution is based on a combination of two approaches: the event-oriented and the measurement-based, with message scheduling. The proposed solution is to reduce congestion and increase reliability to VANETs by assigning higher priority to critical security message.
Cross layer based approaches are increasingly becoming popular in Manet (Mobile Adhoc Network). As Manet are constrained with issues as low battery, limited bandwidth, link breakage and dynamic topology, cross layer based designs are trying to remove such barriers and trying to make Manet more scalable. Cross layer designs are also facing attacking problem and ensuring the security of network to defend the attack is must. In this paper we discuss about technique to optimize the performance by minimizing delay and overhead of secure cross layer routing protocol. We have designed SCLPC (Secure cross layer based Power control) protocol. But when security is imposed using AASR (Authenticated and anonymous secure routing), the network metrics as end to end delay and control overhead is disturbed. To optimize the network performance here we proposed OSCLPC (Optimized secure cross layer based power control protocol). The proposed OSCLPC has been evaluated using SHORT (Self healing and optimizing route technique). The OSCLPC is simulated in ns2 and it is giving the better performance compared with SCLPC.
Mobile ad hoc networks (MANETs) are self-configuring, dynamic networks in which nodes are free to move. These nodes are susceptible to various malicious attacks. In this paper, we propose a distributed trust-based security scheme to prevent multiple attacks such as Probe, Denial-of-Service (DoS), Vampire, User-to-Root (U2R) occurring simultaneously. We report above 95% accuracy in data transmission and reception by applying the proposed scheme. The simulation has been carried out using network simulator ns-2 in a AODV routing protocol environment. To the best of the authors' knowledge, this is the first work reporting a distributed trust-based prevention scheme for preventing multiple attacks. We also check the scalability of the technique using variable node densities in the network.
Software Defined Network (SDN) is getting popularity both from academic and industry. Lot of researches have been made to combine SDN with future Internet paradigms to manage and control networks efficiently. SDN provides better management and control in a network through decoupling of data and control plane. Named Data Networking (NDN) is a future Internet technique with aim to replace IPv4 addressing problems. In NDN, communication between different nodes done on the basis of content names rather than IP addresses. Vehicular Ad-hoc Network (VANET) is a subtype of MANET which is also considered as a hot area for future applications. Different vehicles communicate with each other to form a network known as VANET. Communication between VANET can be done in two ways (i) Vehicle to Vehicle (V2V) (ii) Vehicle to Infrastructure (V2I). Combination of SDN and NDN techniques in future Internet can solve lot of problems which were hard to answer by considering a single technique. Security in VANET is always challenging due to unstable topology of VANET. In this paper, we merge future Internet techniques and propose a new scheme to answer timing attack problem in VANETs named as Timing Attack Prevention (TAP) protocol. Proposed scheme is evaluated through simulations which shows the superiority of proposed protocol regarding detection and mitigation of attacker vehicles as compared to normal timing attack scenario in NDN based VANET.
Mobile Ad Hoc Networks are dynamic in nature and have no rigid or reliable network infrastructure by their very definition. They are expected to be self-governed and have dynamic wireless links which are not entirely reliable in terms of connectivity and security. Several factors could cause their degradation, such as attacks by malicious and selfish nodes which result in data carrying packets being dropped which in turn could cause breaks in communication between nodes in the network. This paper aims to address the issue of remedy and mitigation of the damage caused by packet drops. We proposed an improvement on the EAACK protocol to reduce the network overhead packet delivery ratio by using hybrid cryptography techniques DES due to its higher efficiency in block encryption, and RSA due to its management in key cipher. Comparing to the existing approaches, our simulated results show that hybrid cryptography techniques provide higher malicious behavior detection rates, and improve the performance. This research can also lead to more future efforts in using hybrid encryption based authentication techniques for attack detection/prevention in MANETs.
MANET is vulnerable to so many attacks like Black hole, Wormhole, Jellyfish, Dos etc. Attackers can easily launch Wormhole attack by faking a route from original within network. In this paper, we propose an algorithm on AD (Absolute Deviation) of statistical approach to avoid and prevent Wormhole attack. Absolute deviation covariance and correlation take less time to detect Wormhole attack than classical one. Any extra necessary conditions, like GPS are not needed in proposed algorithms. From origin to destination, a fake tunnel is created by wormhole attackers, which is a link with good amount of frequency level. A false idea is created by this, that the source and destination of the path are very nearby each other and will take less time. But the original path takes more time. So it is necessary to calculate the time taken to avoid and prevent Wormhole attack. Better performance by absolute deviation technique than AODV is proved by simulation, done by MATLAB simulator for wormhole attack. Then the packet drop pattern is also measured for Wormholes using Absolute Deviation Correlation Coefficient.
For the security of mobile ad-hoc networks (MANETs), a group of wireless mobile nodes needs to cooperate by forwarding packets, to implement an intrusion detection system (IDS). Some of the current IDS implementations in a clustered MANET have designed mobile nodes to wait until the cluster head is elected before scanning the network and thus nodes may be, unfortunately, exposed to several control packet attacks by which nodes identify falsified routes to reach other nodes. In order to detect control packet attacks such as route falsification, we design a route cache sharing mechanism for a non-clustered network where all one-hop routing data are collected by each node for a cooperative host-based detection. The cooperative host-based detection system uses a Support Vector Machine classifier and achieves a detection rate of around 95%. By successfully detecting the route falsification attacks, nodes are given the capability to avoid other attacks such as black-hole and gray-hole, which are in many cases a result of a successful route falsification attack.