Visible to the public Biblio

Found 154 results

Filters: Keyword is MANET  [Clear All Filters]
2020-12-14
Pandey, S., Singh, V..  2020.  Blackhole Attack Detection Using Machine Learning Approach on MANET. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :797–802.

Mobile Ad-hoc Network (MANET) consists of different configurations, where it deals with the dynamic nature of its creation and also it is a self-configurable type of a network. The primary task in this type of networks is to develop a mechanism for routing that gives a high QoS parameter because of the nature of ad-hoc network. The Ad-hoc-on-Demand Distance Vector (AODV) used here is the on-demand routing mechanism for the computation of the trust. The proposed approach uses the Artificial neural network (ANN) and the Support Vector Machine (SVM) for the discovery of the black hole attacks in the network. The results are carried out between the black hole AODV and the security mechanism provided by us as the Secure AODV (SAODV). The results were tested on different number of nodes, at last, it has been experimented for 100 nodes which provide an improvement in energy consumption of 54.72%, the throughput is 88.68kbps, packet delivery ratio is 92.91% and the E to E delay is of about 37.27ms.

2020-11-17
Zhou, Z., Qian, L., Xu, H..  2019.  Intelligent Decentralized Dynamic Power Allocation in MANET at Tactical Edge based on Mean-Field Game Theory. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :604—609.

In this paper, decentralized dynamic power allocation problem has been investigated for mobile ad hoc network (MANET) at tactical edge. Due to the mobility and self-organizing features in MANET and environmental uncertainties in the battlefield, many existing optimal power allocation algorithms are neither efficient nor practical. Furthermore, the continuously increasing large scale of the wireless connection population in emerging Internet of Battlefield Things (IoBT) introduces additional challenges for optimal power allocation due to the “Curse of Dimensionality”. In order to address these challenges, a novel Actor-Critic-Mass algorithm is proposed by integrating the emerging Mean Field game theory with online reinforcement learning. The proposed approach is able to not only learn the optimal power allocation for IoBT in a decentralized manner, but also effectively handle uncertainties from harsh environment at tactical edge. In the developed scheme, each agent in IoBT has three neural networks (NN), i.e., 1) Critic NN learns the optimal cost function that minimizes the Signal-to-interference-plus-noise ratio (SINR), 2) Actor NN estimates the optimal transmitter power adjustment rate, and 3) Mass NN learns the probability density function of all agents' transmitting power in IoBT. The three NNs are tuned based on the Fokker-Planck-Kolmogorov (FPK) and Hamiltonian-Jacobian-Bellman (HJB) equation given in the Mean Field game theory. An IoBT wireless network has been simulated to evaluate the effectiveness of the proposed algorithm. The results demonstrate that the actor-critic-mass algorithm can effectively approximate the probability distribution of all agents' transmission power and converge to the target SINR. Moreover, the optimal decentralized power allocation is obtained through integrated mean-field game theory with reinforcement learning.

2020-11-02
Vaseer, G., Ghai, G., Ghai, D., Patheja, P. S..  2019.  A Neighbor Trust-Based Mechanism to Protect Mobile Networks. IEEE Potentials. 38:20–25.
Mobile nodes in a mobile ad hoc network (MANET) form a temporal link between a sender and receiver due to their continuous movement in a limited area. This network can be easily attacked because there is no organized identity. This article discusses the MANET, its various associated challenges, and selected solutions. As a case study, a neighbor trust-based security scheme that can prevent malicious attacks in a MANET is discussed in detail. The security scheme identifies each node's behavior in the network in terms of packets received and forwarded. Nodes are placed in a suspicious range, and if the security scheme detects malicious function continuously, then it is confirmed that the particular node is the attacker in the network.
Thurston, K. H., Leon, D. Conte de.  2019.  MACH-2K Architecture: Building Mobile Device Trust and Utility for Emergency Response Networks. 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW). :152–157.
In this article, we introduce the MACH-2K trust overlay network and its architecture. MACH-2K's objectives are to (a) enhance the resiliency of emergency response and public service networks and (b) help build such networks in places, or at times, where network infrastructure is limited. Resiliency may be enhanced in an economic manner by building new ad hoc networks of private mobile devices and joining these to public service networks at specific trusted points. The major barrier to building resiliency by using private devices is ensuring security. MACH-2K uses device location and communication utility patterns to assign trust to devices, after owner approval. After trust is established, message confidentiality, privacy, and integrity may be implemented by well-known cryptographic means. MACH-2K devices may be then requested to forward or consume different types of messages depending on their current level of trust and utility.
Mohsen, Y., Hamdy, M., Shaaban, E..  2019.  Key distribution protocol for Identity Hiding in MANETs. 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS). :245–252.
Mobile Ad-hoc Networks (MANETs) are formed when a group of mobile nodes, communicate through wireless links in the absence of central administration. These features make them more vulnerable to several attacks like identity spoofing which leads to identity disclosure. Providing anonymity and privacy for identity are critical issues, especially when the size of such networks scales up. to avoid the centralization problem for key distribution in MANETs. This paper proposes a key distribution scheme for clustered ad-hoc networks. The network is divided into groups of clusters, and each cluster head is responsible for distributing periodically updated security keys among cluster members, for protecting privacy through encryption. Also, an authentication scheme is proposed to ensure the confidentiality of new members to the cluster. The simulation study proves the effectiveness of the proposed scheme in terms of availability and overhead. It scales well for high dense networks and gives less packet drop rate compared to its centralized counterpart in the presence of malicious nodes.
Gupta, D. S., Islam, S. H., Obaidat, M. S..  2019.  A Secure Identity-based Deniable Authentication Protocol for MANETs. 2019 International Conference on Computer, Information and Telecommunication Systems (CITS). :1–5.
A deniable authentication (DA) protocol plays a vital role to provide security and privacy of the mobile nodes in a mobile ad hoc network (MANET). In recent years, a number of similar works have been proposed, but most of them experience heavy computational and communication overhead. Further, most of these protocols are not secure against different attacks. To address these concerns, we devised an identity-based deniable authentication (IBDA) protocol with adequate security and efficiency. The proposed IBDA protocol is mainly designed for MANETs, where the mobile devices are resource-limited. The proposed IBDA protocol used the elliptic curve cryptography (ECC) and identity-based cryptosystem (IBC). The security of our IBDA protocol depends on the elliptic curve discrete logarithm (ECDL) problem and bilinear Diffie-Hellman (BDH) problem.
Kadhim, H., Hatem, M. A..  2019.  Secure Data Packet in MANET Based Chaos-Modified AES Algorithm. 2019 2nd International Conference on Engineering Technology and its Applications (IICETA). :208–213.
Security is one of the more challenging problem for wireless Ad-Hoc networks specially in MANT due their features like dynamic topology, no centralized infrastructure, open architecture, etc. that make its more prone to different attacks. These attacks can be passive or active. The passive attack it hard to detect it in the network because its targets the confidential of data packet by eavesdropping on it. Therefore, the privacy preservation for data packets payload which it transmission over MANET has been a major part of concern. especially for safety-sensitive applications such as, privacy conference meetings, military applications, etc. In this paper it used symmetric cryptography to provide privacy for data packet by proposed modified AES based on five proposed which are: Key generation based on multi chaotic system, new SubByte, new ShiftRows, Add-two-XOR, Add-Shiftcycl.
2020-10-29
Dholey, Milan Kumar, Biswas, G. P..  2018.  Secure DSR Routing from Malicious Node by PGP Encryption. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :1449—1453.

Mobile ad hoc network (MANET) is an infrastructure less, self organizing on demand wireless communication. The nodes communicate among themselves through their radio range and nodes within the range are known as neighbor nodes. DSR (Dynamic Source Routing), a MANET reactive routing protocol identify the destination by transmitting route request (RREQ) control message into the network and establishes a path after receiving route reply (RREP) control messages. The intermediate node lies in between source to destination may also send RREP control message, weather they have path information about that destination is present into their route cache due to any previous communication. A malicious node may enter within the network and may send RREP control message to the source before original RREP is being received. After receiving RREP without knowing about the destination source starts to send data and data may reached to a different location. In this paper we proposed a novel algorithm by which a malicious node, even stay in the network and send RREP control message but before data transmission source can authenticate the destination by applying PGP (pretty Good Privacy) encryption program. In order to design our algorithm we proposed to add an extra field with RREQ control message with a unique index value (UIV) and two extra fields in RREP applied over UIV to form a random key (Rk) in such a way that, our proposal can maintained two way authorization scheme. Even a malicious node may exists into the network but before data transmission source can identified weather RREP is received by the requested destination or a by a malicious node.

Noguchi, Taku, Hayakawa, Mayuko.  2018.  Black Hole Attack Prevention Method Using Multiple RREPs in Mobile Ad Hoc Networks. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :539—544.

A mobile ad hoc network (MANET) is a collection of mobile nodes that do not need to rely on a pre-existing network infrastructure or centralized administration. Securing MANETs is a serious concern as current research on MANETs continues to progress. Each node in a MANET acts as a router, forwarding data packets for other nodes and exchanging routing information between nodes. It is this intrinsic nature that introduces the serious security issues to routing protocols. A black hole attack is one of the well-known security threats for MANETs. A black hole is a security attack in which a malicious node absorbs all data packets by sending fake routing information and drops them without forwarding them. In order to defend against a black hole attack, in this paper we propose a new threshold-based black hole attack prevention method using multiple RREPs. To investigate the performance of the proposed method, we compared it with existing methods. Our simulation results show that the proposed method outperforms existing methods from the standpoints of packet delivery rate, throughput, and routing overhead.

El-Zoghby, Ayman M., Mosharafa, Ahmed, Azer, Marianne A..  2018.  Anonymous Routing Protocols in MANETs, a Security Comparative Analysis. 2018 14th International Computer Engineering Conference (ICENCO). :254—259.

A Mobile Ad Hoc Network (MANET) is considered a type of network which is wireless and has no fixed infrastructure composed of a set if nodes in self organized fashion which are randomly, frequently and unpredictably mobile. MANETs can be applied in both military and civil environments ones because of its numerous applications. This is due to their special characteristics and self-configuration capability. This is due to its dynamic nature, lack of fixed infrastructure, and the no need of being centrally managed; a special type of routing protocols such as Anonymous routing protocols are needed to hide the identifiable information of communicating parties, while preserving the communication secrecy. This paper provides an examination of a comprehensive list of anonymous routing protocols in MANET, focusing their security and performance capabilities.

Chauhan, Gargi K, Patel, Saurabh M.  2018.  Public String Based Threshold Cryptography (PSTC) for Mobile Ad Hoc Networks (MANET). 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS). :1—5.
Communication is an essential part of everyday life, both as a social interaction and collaboration to achieve goals. Wireless technology has effectively release the users to roam more freely to achieving collaboration and communication. The principle attraction of mobile ad hoc networks (MANET) are their set-up less and decentralized action. However, mobile ad hoc networks are seen as relatively easy targets for attackers. Security in mobile ad hoc network is provided by encrypting the data when exchanging messages and key management. Cryptography is therefore vital to ensure privacy of message and robustness against disruption. The proposed scheme public string based threshold cryptography (PSTC) describes the new scheme based on threshold cryptography that provides reasonably secure and robust cryptography scheme for mobile ad hoc networks. The scheme is implemented and simulated in ns-2. The scheme is based on trust value and analyze against Denial of Service attack as node found the attacker, the node reject all packet from that attacker. In proposed scheme whole network is compromised only when all nodes of network is compromised because threshold nodes only sharing public string not the master private key. The scheme provides confidentiality and integrity. The default threshold value selected is 2 according to time and space analysis.
Sajyth, RB, Sujatha, G.  2018.  Design of Data Confidential and Reliable Bee Clustering Routing Protocol in MANET. 2018 International Conference on Computer Communication and Informatics (ICCCI). :1—7.
Mobile ad hoc network (MANET) requires extraneous energy effectualness and legion intelligence for which a best clustered based approach is pertained called the “Bee-Ad Hoc-C”. In MANET the mechanism of multi-hop routing is imperative but may leads to a challenging issue like lack of data privacy during communication. ECC (Elliptical Curve Cryptography) is integrated with the Bee clustering approach to provide an energy efficient and secure data delivery system. Even though it ensures data confidentiality, data reliability is still disputable such as data dropping attack, Black hole attack (Attacker router drops the data without forwarding to destination). In such cases the technique of overhearing is utilized by the neighbor routers and the packet forwarding statistics are measured based on the ratio between the received and forwarded packets. The presence of attack is detected if the packet forwarding ratio is poor in the network which paves a way to the alternate path identification for a reliable data transmission. The proposed work is an integration of SC-AODV along with ECC in Bee clustering approach with an extra added overhearing technique which n on the whole ensures data confidentiality, data reliability and energy efficiency.
Tomar, Ravi, Awasthi, Yogesh.  2019.  Prevention Techniques Employed in Wireless Ad-Hoc Networks. 2019 International Conference on Advanced Science and Engineering (ICOASE). :192—197.
The paper emphasizes the various aspects of ad-hoc networks. The different types of attacks that affect the system and are prevented by various algorithms mentioned in this paper. Since Ad-hoc wireless networks have no infrastructure and are always unreliable therefore they are subject to many attacks. The black hole attack is seen as one of the dangerous attacks of them. In this attack the malicious node usually absorbs each data packets that are similar to separate holes in everything. Likewise all packets in the network are dropped. For this reason various prevention measures should be employed in the form of routing finding first then the optimization followed by the classification.
Hossain, Sazzat, Hussain, Md. Sazzad, Ema, Romana Rahman, Dutta, Songita, Sarkar, Suborna, Islam, Tajul.  2019.  Detecting Black hole attack by selecting appropriate routes for authentic message passing using SHA-3 and Diffie-Hellman algorithm in AODV and AOMDV routing protocols in MANET. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.
Ad hoc network is sensitive to attacks because it has temporary nature and frequently recognized insecure environment. Both Ad hoc On-demand Distance Vector (AODV) and Ad hoc On-demand Multipath Distance vector (AOMDV) routing protocols have the strategy to take help from Wireless and mobile ad hoc networks. A mobile ad hoc network (MANET) is recognized as an useful internet protocol and where the mobile nodes are self-configuring and self-organizing in character. This research paper has focused on the detection and influence of black hole attack on the execution of AODV and AOMDV routing protocols and has also evaluated the performance of those two on-demand routing protocols in MANETs. AODV has the characteristics for discovering a single path in single route discovery and AOMDV has the characteristics for discovering multiple paths in single route discovery. Here a proposed method for both AODV and AOMDV routing protocol, has been applied for the detection of the black hole attack, which is the merge of both SHA-3 and Diffie-Hellman algorithm. This merge technique has been applied to detect black hole attack in MANET. This technique has been applied to measure the performance matrices for both AODV and AOMDV and those performance matrices are Average Throughput, Average End to End delay and Normalized Routing Load. Both AODV and AOMDV routing protocol have been compared with each other to show that under black hole attack, AOMDV protocol always has better execution than AODV protocol. Here, NS-2.35 has been used as the Network Simulator tool for the simulation of these particular three types of performance metrics stated above.
2020-08-28
Aravindhar, D. John, Gino Sophia, S. G., Krishnan, Padmaveni, Kumar, D. Praveen.  2019.  Minimization of Black hole Attacks in AdHoc Networks using Risk Aware Response Mechanism. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :1391—1394.

Mobile Ad hoc Network (MANET) is the collection of mobile devices which could change the locations and configure themselves without a centralized base point. Mobile Ad hoc Networks are vulnerable to attacks due to its dynamic infrastructure. The routing attacks are one among the possible attacks that causes damage to MANET. This paper gives a new method of risk aware response technique which is combined version the Dijkstra's shortest path algorithm and Destination Sequenced Distance Vector (DSDV) algorithm. This can reduce black hole attacks. Dijkstra's algorithm finds the shortest path from the single source to the destination when the edges have positive weights. The DSDV is an improved version of the conventional technique by adding the sequence number and next hop address in each routing table.

2020-08-03
Gopalakrishnan, S., Rajesh, A..  2019.  Cluster based Intrusion Detection System for Mobile Ad-hoc Network. 2019 Fifth International Conference on Science Technology Engineering and Mathematics (ICONSTEM). 1:11–15.

Mobile Ad-hoc network is decentralized and composed of various individual devices for communicating with each other. Its distributed nature and infrastructure deficiency are the way for various attacks in the network. On implementing Intrusion detection systems (IDS) in ad-hoc node securities were enhanced by means of auditing and monitoring process. This system is composed with clustering protocols which are highly effective in finding the intrusions with minimal computation cost on power and overhead. The existing protocols were linked with the routes, which are not prominent in detecting intrusions. The poor route structure and route renewal affect the cluster hardly. By which the cluster are unstable and results in maximization processing along with network traffics. Generally, the ad hoc networks are structured with battery and rely on power limitation. It needs an active monitoring node for detecting and responding quickly against the intrusions. It can be attained only if the clusters are strong with extensive sustaining capability. Whenever the cluster changes the routes also change and the prominent processing of achieving intrusion detection will not be possible. This raises the need of enhanced clustering algorithm which solved these drawbacks and ensures the network securities in all manner. We proposed CBIDP (cluster based Intrusion detection planning) an effective clustering algorithm which is ahead of the existing routing protocol. It is persistently irrespective of routes which monitor the intrusion perfectly. This simplified clustering methodology achieves high detecting rates on intrusion with low processing as well as memory overhead. As it is irrespective of the routes, it also overcomes the other drawbacks like traffics, connections and node mobility on the network. The individual nodes in the network are not operative on finding the intrusion or malicious node, it can be achieved by collaborating the clustering with the system.

POLAT, Hüseyin, POLAT, Onur, SÖĞÜT, Esra, ERDEM, O. Ayhan.  2019.  Performance Analysis of Between Software Defined Wireless Network and Mobile Ad Hoc Network Under DoS Attack. 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). :1–5.

The traditional network used today is unable to meet the increasing needs of technology in terms of management, scaling, and performance criteria. Major developments in information and communication technologies show that the traditional network structure is quite lacking in meeting the current requirements. In order to solve these problems, Software Defined Network (SDN) is capable of responding as it, is flexible, easier to manage and offers a new structure. Software Defined Networks have many advantages over traditional network structure. However, it also brings along many security threats due to its new architecture. For example, the DoS attack, which overloads the controller's processing and communication capacity in the SDN structure, is a significant threat. Mobile Ad Hoc Network (MANET), which is one of the wireless network technologies, is different from SDN technology. MANET is exposed to various attacks such as DoS due to its security vulnerabilities. The aim of the study is to reveal the security problems in SDN structure presented with a new understanding. This is based on the currently used network structures such as MANET. The study consists of two parts. First, DoS attacks against the SDN controller were performed. Different SDN controllers were used for more accurate results. Second, MANET was established and DoS attacks against this network were performed. Different MANET routing protocols were used for more accurate results. According to the scenario, attacks were performed and the performance values of the networks were tested. The reason for using two different networks in this study is to compare the performance values of these networks at the time of attack. According to the test results, both networks were adversely affected by the attacks. It was observed that network performance decreased in MANET structure but there was no network interruption. The SDN controller becomes dysfunctional and collapses as a result of the attack. While the innovations offered by the SDN structure are expected to provide solutions to many problems in traditional networks, there are still many vulnerabilities for network security.

Seetharaman, R., Subramaniam, L.Harihara, Ramanathan, S..  2019.  Mobile Ad Hoc Network for Security Enhancement. 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC). :279–282.

This project enhances the security in which Ad Hoc On-Demand Distance Vector (AODV) routing protocol for MANETs with the game theoretical approach. This is achieved by using public key and private key for encryption and decryption processes. Proactive and reactive method is implemented in the proposed system. Reactive method is done in identification process but in proactive method is used to identify the nodes and also block the hackers node, then change the direction of data transmission to good nodes. This application can be used in military, research, confidential and emergency circumferences.

Islam, Noman.  2019.  A Secure Service Discovery Scheme for Mobile ad hoc Network using Artificial Deep Neural Network. 2019 International Conference on Frontiers of Information Technology (FIT). :133–1335.

In this paper, an agent-based cross-layer secure service discovery scheme has been presented. Service discovery in MANET is a critical task and it presents numerous security challenges. These threats can compromise the availability, privacy and integrity of service discovery process and infrastructure. This paper highlights various security challenges prevalent to service discovery in MANET. Then, in order to address these security challenges, the paper proposes a cross-layer, agent based secure service discovery scheme for MANET based on deep neural network. The software agents will monitor the intrusive activities in the network based on an Intrusion Detection System (IDS). The service discovery operation is performed based on periodic dissemination of service, routing and security information. The QoS provisioning is achieved by encapsulating QoS information in the periodic advertisements done by service providers. The proposed approach has been implemented in JIST/ SWANS simulator. The results show that proposed approach provides improved security, scalability, latency, packet delivery ratio and service discovery success ratio, for various simulation scenarios.

2020-07-27
Babasaheb, Desai Rahul, Raman, Indhumathi.  2018.  Survey on Fault Tolerance and Security in Mobile Ad Hoc Networks (MANETs). 2018 3rd International Conference for Convergence in Technology (I2CT). :1–5.
Providing fault tolerance in Mobile Ad hoc Networks (MANETs) is very tricky activity as nodes migrate from one place to other place and changes network topology. Also MANET is very susceptible for various attacks like DoS attacks etc. So providing security to MANET is also very difficult job. Multipath protocols provide better results than unipath protocols. Multipath protocols provide fault tolerance but many multipath protocols for MANETs not targeted security issues. Distributed and cooperative security that means Intrusion Detection System (IDS) gives better security to MANETs. In this paper we have discussed many confronts and concerns regarding fault tolerance and IDS.
2020-06-01
Aziz, Nooralhuda waheed, Alsaad, Saad Najim, Hmood, Haider kadhum.  2019.  Implementation of Lightweight Stream Cipher in AODV Routing Protocol for MANET. 2019 First International Conference of Computer and Applied Sciences (CAS). :210—215.

The growing use of MANETs and its vulnerability to attacks due to its fundamental characteristics make secure routing one of the most considerable challenges. In this paper, a new security scheme for mobile ad hoc networks (MANETs) is presented. The proposed scheme used Trivium lightweight stream cipher algorithm in combination with HMAC to secure the routing control packets. This paper compares the performance of the AODV after implementing the security scheme in terms of throughput, delay sum (end-to-end), jitter sum (end-to-end) and packet loss ratio. The proposed scheme shows better performance than original AODV under blackhole attack.

Sivanesh, S., Sarma Dhulipala, V.R..  2019.  Comparitive Analysis of Blackhole and Rushing Attack in MANET. 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW). :495—499.

For the past few decades, mobile ad hoc networks (MANETs) have been a global trend in wireless networking technology. These kind of ad-hoc networks are infrastructure less, dynamic in topology and further doesn't have a centralized network administration which makes it easier for the intruders to launch several attacks on MANETs. In this paper, we have made a comparative analysis of the network layer attack by simulating rushing and black hole attack using NS-2 network simulator. For determining the most vulnerable attack we have considered packet delivery ratio, end to end delay and throughput as a evaluation metrices. Here, AODV routing protocol has been configured for data forwarding operations. From our Simulation result, it is evident that the black hole attack is more vulnerable when compared to the rushing attack.

2020-05-26
Hamamreh, Rushdi A., Ayyad, Mohammad, Jamoos, Mohammad.  2019.  RAD: Reinforcement Authentication DYMO Protocol for MANET. 2019 International Conference on Promising Electronic Technologies (ICPET). :136–141.
Mobile ad hoc network (MANET) does not have fixed infrastructure centralized server which manage the connections between the nodes. Rather, the nodes in MANET move randomly. Thus, it is risky to exchange data between nodes because there is a high possibility of having malicious node in the path. In this paper, we will describe a new authentication technique using message digest 5 (MD5), hashing for dynamic MANET on demand protocol (DYMO) based on reinforcement learning. In addition, we will describe an encryption technique that can be used without the need for a third party to distribute a secret key. After implementing the suggested model, results showed a remarkable enhancement in securing the path by increasing the packet delivery ratio and average throughput. On the other hand, there was an increase in end to end delay due to time spent in cryptographic operations.
Soualfi, Abderrahim Hajji, Agoujil, Said, Qaraai, Youssef.  2019.  Performance Analysis of OLSR Protocol under MPR Attack in Progressive Size Grid MANET. 2019 International Conference on Wireless Networks and Mobile Communications (WINCOM). :1–5.
Mobile Ad-hoc NETwork (MANET) is a collection of mobile devices which interchange information without the use of predefined infrastructures or central administration. It is employed in many domains such as military and commercial sectors, data and sensors networks, low level applications, etc. The important constraints in this network are the limitation of bandwidth, processing capabilities and battery life. The choice of an effective routing protocol is primordial. From many routing protocols developed for MANET, OLSR protocol is a widely-used proactive routing protocol which diffuses topological information periodically. Thus, every node has a global vision of the entire network. The protocol assumes, like the other protocols, that the nodes cooperate in a trusted environment. So, all control messages are transmitted (HELLO messages) to all 1-hop neighbor nodes or broadcasted (TC and MID messages) to the entire network in clear. However, a node, which listens to OLSR control messages, can exploit this property to lead an attack. In this paper, we investigate on MultiPoint Relay (MPR) attack considered like one of the efficient OLSR attacks by using a simulation in progressive size gridMANET.
Jim, Lincy Elizebeth, Chacko, Jim.  2019.  Decision Tree based AIS strategy for Intrusion Detection in MANET. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :1191–1195.
Mobile Ad hoc Networks (MANETs) are wireless networks that are void of fixed infrastructure as the communication between nodes are dependent on the liaison of each node in the network. The efficacy of MANET in critical scenarios like battlefield communications, natural disaster require new security strategies and policies to guarantee the integrity of nodes in the network. Due to the inherent frailty of MANETs, new security measures need to be developed to defend them. Intrusion Detection strategy used in wired networks are unbefitting for wireless networks due to reasons not limited to resource constraints of participating nodes and nature of communication. Nodes in MANET utilize multi hop communication to forward packets and this result in consumption of resources like battery and memory. The intruder or cheat nodes decide to cooperate or non-cooperate with other nodes. The cheat nodes reduce the overall effectiveness of network communications such as reduced packet delivery ratio and sometimes increase the congestion of the network by forwarding the packet to wrong destination and causing packets to take more times to reach the appropriate final destination. In this paper a decision tree based artificial immune system (AIS) strategy is utilized to detect such cheat nodes thereby improving the efficiency of packet delivery.