Visible to the public Biblio

Found 154 results

Filters: Keyword is MANET  [Clear All Filters]
2022-12-09
Yassin, Ahmed Mohsen, Azer, Marianne A..  2022.  Performance Comparison of AODV and DSDV In Vehicular Ad Hoc Networks. 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). :402—405.
Vehicle Ad-Hoc Networks (VANETs) are a special type of Mobile Ad-Hoc Network (MANETs). In VANETs, a group of vehicles communicates with each other to transfer data without a need for a fixed infrastructure. In this paper, we compare the performance of two routing protocols: Ad-hoc on Demand Distance Vector protocol (AODV) and Destination-Sequenced Distance Vector protocol (DSDV) in VANETs. We measure the reliability of each protocol in the packet delivery.
2022-02-22
Ibrahim, Hussein Abdumalik, Sundaram, B.Barani, Ahmed, Asedo Shektofik, Karthika, P..  2021.  Prevention of Rushing Attack in AOMDV using Random Route Selection Technique in Mobile Ad-hoc Network. 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA). :626–633.
Ad Hoc Network is wireless networks that get more attention from past to present. Mobile ad hoc network (MANET) is one of the types of ad hoc networks, it deployed rapidly because it infrastructure-less. A node in a mobile ad hoc network communicates through wireless links without wired channels. When source nodes want to communicate with the destination outside its transmission range it uses multi-hop mechanisms. The intermediate node forwards the data packet to the next node until the data packet reaches its destination. Due wireless links and lack of centralized administration device, mobile ad hoc network is more vulnerable for security attacks. The rushing attack is one of the most dangerous attacks in the on-demand routing protocol of mobile ad hoc networks. Rushing attack highly transmits route request with higher transmission power than the genuine nodes and become participate between source and destination nodes, after that, it delays or drop actual data pass through it. In this study, the researcher incorporates rushing attack in one of the most commonly used mobile ad hoc network routing protocols namely Ad hoc on-demand multipath distance vector and provides a rushing attack prevention method based on the time threshold value and random route selection. Based on the time RREQ arrives a node takes a decision, if the RREQ packet arrives before threshold value, the RREQ packet consider as came from an attacker and discarded else RREQ packet received then randomly select RREQ to forward. In this study performance metrics like packet delivery ratio, end-to-end delay and throughput have been evaluated using Network simulation (NS-2.35). As a result of simulation shows newly proposed prevention mechanism improves network performance in all cases than the network under attacker. For example, the average packet delivery ratio enhanced from 54.37% to 97.69%, throughput increased from 20.84bps to 33.06bpsand the average delay decreased from 1147.22ms to 908.04ms. It is concluded that the new proposed techniques show improvement in all evaluated performance metrics.
2022-02-08
Shukla, Mukul, Joshi, Brijendra Kumar.  2021.  A Trust Based Approach to Mitigate Wormhole Attacks in Mobile Adhoc Networks. 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT). :776–782.
MANET stands for Mobile ad-hoc network, which is also known as a wireless network. It provides a routable networking environment which does not have a centralized infrastructure. MANET is used in many important sectors like economic sector (corporate field), security sector (military field), education sector (video conferences and lectures), law sector (law enforcement) and many more. Even though it plays a vital role in different sectors and improves its economic growth, security is a major concern in MANET. Due to lack of inbuilt security, several attacks like data traffic attack, control traffic attack. The wormhole is a kind of control traffic attack which forms wormhole link between nodes. In this paper, we have proposed an approach to detect and get rid of the wormhole attack. The proposed approach is based on trust values, which will decide whether nodes are affected by using parameters like receiving time and data rate. On evaluation, we have concluded that the wormhole attack decreases the network's performance while using trusted approach its value increases. Means PDR and throughput return best results for the affected network while in case of end to end delay it returns similar results as of unaffected network.
Rodríguez-Baeza, Juan-Antonio, Magán-Carrión, Roberto, Ruiz-Villalobos, Patricia.  2021.  Advances on Security in Ad Hoc Networks: A preliminary analysis. 2021 16th Iberian Conference on Information Systems and Technologies (CISTI). :1–5.
Today we live in a hyper-connected world, where a large amount of applications and services are supported by ad hoc networks. They have a decentralized management, are flexible and versatile but their characteristics are in turn their main weaknesses. This work introduces a preliminary analysis of the evolution, trends and the state of the art in the context of the security in ad hoc networks. To this end, two different methodologies are applied: a bibliometric analysis and a Systematic Literature Review. Results show that security in MANETs and VANETs are still an appealing research field. In addition, we realized that there is no clear separation of solutions by line of defense. This is because they are sometimes misclassified by the authors or simply there is no line of defense that totally fit well with the proposed solution. Because of that, new taxonomies including novel definitions of lines of defense are needed. In this work, we propose the use of tolerant or survivable solutions which are the ones that preserve critical system or network services in presence of fault, malfunctions or attacks.
Gupta, Aruna, Sasikala, T..  2021.  Secure Routing Protocols for MANET-enabled IoT. 2021 IEEE International Conference on Mobile Networks and Wireless Communications (ICMNWC). :1–4.
Mobile Ad-hoc Networks (MANET) is an autonomous network consisting of movable devices that can form a network using wireless media. MANET routing protocols can be used for selecting an efficient and shortest path for data transmission between nodes in a smart environment formed by the Internet of Things (IoT). Networking in such MANET-enabled IoT system is based on the routing protocols of MANET, data sensing from things, and data handling and processing using IoT. This paper studies proactive approach-based secure routing protocols for MANET-enabled IoT and analyses these protocols to identify security issues in it. Since this fusion network is resource-constrained in nature, each of the studied protocol is evaluated to check if it is lightweight or not. Also, the solution to defend against active attacks in this network is discussed.
2022-02-07
Abbood, Zainab Ali, Atilla, Doğu Çağdaş, Aydin, Çağatay, Mahmoud, Mahmoud Shuker.  2021.  A Survey on Intrusion Detection System in Ad Hoc Networks Based on Machine Learning. 2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI). :1–8.
This advanced research survey aims to perform intrusion detection and routing in ad hoc networks in wireless MANET networks using machine learning techniques. The MANETs are composed of several ad-hoc nodes that are randomly or deterministically distributed for communication and acquisition and to forward the data to the gateway for enhanced communication securely. MANETs are used in many applications such as in health care for communication; in utilities such as industries to monitor equipment and detect any malfunction during regular production activity. In general, MANETs take measurements of the desired application and send this information to a gateway, whereby the user can interpret the information to achieve the desired purpose. The main importance of MANETs in intrusion detection is that they can be trained to detect intrusion and real-time attacks in the CIC-IDS 2019 dataset. MANETs routing protocols are designed to establish routes between the source and destination nodes. What these routing protocols do is that they decompose the network into more manageable pieces and provide ways of sharing information among its neighbors first and then throughout the whole network. The landscape of exciting libraries and techniques is constantly evolving, and so are the possibilities and options for experiments. Implementing the framework in python helps in reducing syntactic complexity, increases performance compared to implementations in scripting languages, and provides memory safety.
Abdel-Fattah, Farhan, AlTamimi, Fadel, Farhan, Khalid A..  2021.  Machine Learning and Data Mining in Cybersecurty. 2021 International Conference on Information Technology (ICIT). :952–956.
A wireless technology Mobile Ad hoc Network (MANET) that connects a group of mobile devices such as phones, laptops, and tablets suffers from critical security problems, so the traditional defense mechanism Intrusion Detection System (IDS) techniques are not sufficient to safeguard and protect MANET from malicious actions performed by intruders. Due to the MANET dynamic decentralized structure, distributed architecture, and rapid growing of MANET over years, vulnerable MANET does not need to change its infrastructure rather than using intelligent and advance methods to secure them and prevent intrusions. This paper focuses essentially on machine learning methodologies and algorithms to solve the shortage of the first line defense IDS to overcome the security issues MANET experience. Threads such as black hole, routing loops, network partition, selfishness, sleep deprivation, and denial of service (DoS), may be easily classified and recognized using machine learning methodologies and algorithms. Also, machine learning methodologies and algorithms help find ways to reduce and solve mischievous and harmful attacks against intimidation and prying. The paper describes few machine learning algorithms in detail such as Neural Networks, Support vector machine (SVM) algorithm and K-nearest neighbors, and how these methodologies help MANET to resolve their security problems.
Shah, Imran Ali, Kapoor, Nitika.  2021.  To Detect and Prevent Black Hole Attack in Mobile Ad Hoc Network. 2021 2nd Global Conference for Advancement in Technology (GCAT). :1–4.
Mobile Ad hoc Networks ‘MANETs’ are still defenseless against peripheral threats due to the fact that this network has vulnerable access and also the absence of significant fact of administration. The black hole attack is a kind of some routing attack, in this type of attack the attacker node answers to the Route Requests (RREQs) thru faking and playing itself as an adjacent node of the destination node in order to get through the data packets transported from the source node. To counter this situation, we propose to deploy some nodes (exhibiting some distinctive functionality) in the network called DPS (Detection and Prevention System) nodes that uninterruptedly monitor the RREQs advertised by all other nodes in the networks. DPS nodes target to satisfy the set objectives in which it has to sense the mischievous nodes by detecting the activities of their immediate neighbor. In the case, when a node demonstrates some peculiar manners, which estimates according to the experimental data, DPS node states that particular distrustful node as black hole node by propagation of a threat message to all the remaining nodes in the network. A protocol with a clustering approach in AODV routing protocol is used to sense and avert the black hole attack in the mentioned network. Consequently, empirical evaluation shows that the black hole node is secluded and prohibited from the whole system and is not allowed any data transfer from any node thereafter.
Ankome, Teresia, Lusilao Zodi, Guy-Alain.  2021.  Hierarchical Cooperative Intrusion Detection Method for MANETs (HCIDM). 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM). :1–7.
In the recent years, mobile ad hoc wireless networks (MANETs) have experienced a tremendous rise in popularity and usage due to their flexibility and ability to provide connectivity from anywhere at any time. In general, MANETs provide mobile communication to participating nodes in situation where nodes do not need access to an existing network infrastructure. MANETs have a network topology that changes over time due to lack of infrastructure and mobility of nodes. Detection of a malicious node in MANETs is hard to achieve due to the dynamic nature of the relationships between moving node and the nature of the wireless channel. Most traditional Intrusion Detection System (IDS) are designed to operate in a centralized manner; and do not operate properly in MANET because data in MANETs is distributed in different network devices. In this paper, we present an Hierarchical Cooperative Intrusion Detection Method (HCIDM) to secure packets routing in MANETs. HCIDM is a distributed intrusion detection mechanism that uses collaboration between nodes to detect active attacks against the routing table of a mobile ad hoc network. HCIDM reduces the effectiveness of the attack by informing other nodes about the existence of a malicious node to keep the performance of the network within an acceptable level. The novelty of the mechanism lies in the way the responsibility to protect the networks is distributed among nodes, the trust level is computed and the information about the presence of a malicious is communicated to potential victim. HCIDM is coded using the Network Simulator (NS-2) in an ad hoc on demand distance vector enable MANET during a black hole attack. It is found that the HCIDM works efficiently in comparison with an existing Collaborative Clustering Intrusion Detection Mechanism (CCIDM), in terms of delivery ratio, delay and throughput.
Nurwarsito, Heru, Iskandar, Chairul.  2021.  Detection Jellyfish Attacks Against Dymo Routing Protocol on Manet Using Delay Per-Hop Indicator (Delphi) Method. 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT). :385–390.
Mobile Ad Hoc Network (MANET) is one of the types of Ad-hoc Network which is comprised of wireless in a network. The main problem in this research is the vulnerability of the protocol routing Dymo against jellyfish attack, so it needs detection from a jellyfish attack. This research implements the DELPHI method to detect jellyfish attacks on a DYMO protocol which has better performance because the Delay Per-Hop Indicator (DELPHI) gathers the amount of hop and information delay from the disjoint path and calculates the delays per-hop as an indicator of a jellyfish attack. The evaluation results indicate an increase in the end-to-end delay average, start from 112.59s in 10 nodes increased to 143.732s in 30 nodes but reduced to 84,2142s in 50 nodes. But when the DYMO routing did not experience any jellyfish attacks both the delivery ratio and throughput are decreased. The delivery ratio, where decreased from 10.09% to 8.19% in 10 nodes, decreased from 20.35% to 16.85%, and decreased from 93.5644% to 82.825% in 50 nodes. As for the throughput, for 10 nodes decreased from 76.7677kbps to 68.689kbps, for 30 nodes decreased from 100kbps to 83.5821kbps and for 50 nodes decreased from 18.94kbps to 15.94kbps.
Khan, Asif Uddin, Puree, Rajesh, Mohanta, Bhabendu Kumar, Chedup, Sangay.  2021.  Detection and Prevention of Blackhole Attack in AODV of MANET. 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1–7.
One of the most dynamic network is the Mobile Adhoc (MANET) network. It is a list of numerous mobile nodes. Dynamic topology and lack of centralization are the basic characteristics of MANET. MANETs are prone to many attacks due to these characteristics. One of the attacks carried out on the network layer is the blackhole attack. In a black-hole attack, by sending false routing information, malicious nodes interrupt data transmission. There are two kinds of attacks involving a black-hole, single and co-operative. There is one malicious node in a single black-hole attack that can act as the node with the highest sequence number. The node source would follow the direction of the malicious node by taking the right direction. There is more than one malicious node in the collaborative black-hole attack. One node receives a packet and sends it to another malicious node in this attack. It is very difficult to detect and avoid black-hole attacks. Many researchers have invented black-hole attack detection and prevention systems. In this paper, We find a problem in the existing solution, in which validity bit is used. This paper also provides a comparative study of many scholars. The source node is used to detect and prevent black hole attacks by using a binary partition clustering based algorithm. We compared the performance of the proposed solution with existing solution and shown that our solution outperforms the existing one.
2022-01-31
Grabatin, Michael, Hommel, Wolfgang.  2021.  Self-sovereign Identity Management in Wireless Ad Hoc Mesh Networks. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :480–486.

Verifying the identity of nodes within a wireless ad hoc mesh network and the authenticity of their messages in sufficiently secure, yet power-efficient ways is a long-standing challenge. This paper shows how the more recent concepts of self-sovereign identity management can be applied to Internet-of-Things mesh networks, using LoRaWAN as an example and applying Sovrin's decentralized identifiers and verifiable credentials in combination with Schnorr signatures for securing the communication with a focus on simplex and broadcast connections. Besides the concept and system architecture, the paper discusses an ESP32-based implementation using SX1276/SX1278 LoRa chips, adaptations made to the lmic- and MbedTLS-based software stack, and practically evaluates performance aspects in terms of data overhead, time-on-air impact, and power consumption.

2022-01-10
Khan, Ausaf Umar, Chawhan, Manish Devendra, Mushrif, Milind Madhukar, Neole, Bhumika.  2021.  Performance Analysis of Adhoc On-demand Distance Vector Protocol under the influence of Black-Hole, Gray-Hole and Worm-Hole Attacks in Mobile Adhoc Network. 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS). :238–243.
Adhoc On-demand Distance Vector (AODV) is the well-known reactive routing protocol of Mobile Adhoc Network (MANET). Absence of security mechanism in AODV disturbs the routing because of misbehavior of attack and hence, degrades MANET's performance. Secure and efficient routing is a need of various commercial and non-commercial applications of MANET including military and war, disaster and earthquake, and riot control. This paper presents a design of important network layer attacks include black-hole (BH), gray-hole (GH) and worm-hole (WH) attacks. The performance analysis of AODV protocol is carried out under the influence of each designed attack by using the network simulator, NetSim. Simulation results show that, the network layer attacks affect packet delivery ability of AODV protocol with low energy consumption and in short time. Design of attacks helps to understand attack's behavior and hence, to develop security mechanism in AODV.
2021-11-08
Sharma, Nisha, Sharma, Manish, Sharma, Durga Prasad.  2020.  A Trust Based Scheme for Spotting Malicious Node of Wormhole in Dynamic Source Routing Protocol. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :1232–1237.
The exceptional attributes of impromptu network of being framework less, self-composed and unconstrained make the task more challenging to secure it. In mobile Ad-hoc network nodes reliant on one another for transmitting information, that make MANET helpless against different sorts of security attacks. These security attacks can be arranged as Passive and Active attacks. Wormhole is an Active attack and considered generally risky as it can make significant harm routing. Various secure routing mechanism has been created are based on cryptography mechanism, need pre-organized structure, centralized authority, or need external hardware, etc. These components are unreasonable due to restricted accessible assets in MANET. In this paper, we are proposing an effective trust-based mechanism based on the concept of Node to Node packet delay for the detection of the malevolent node of wormhole. The trust value of each node is calculated by observing the packet transaction among adjacent nodes and later this trust value is used for identification of malevolent node. Based on the trust values, further routing decisions and selecting a secured route can be perform.
2021-09-21
Vaseer, Gurveen.  2020.  Multi-Attack Detection Using Forensics and Neural Network Based Prevention for Secure MANETs. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
This paper presents Forensic methods for detection and prevention of multiple attacks along with neural networks like Denial-of-Service (DoS), probe, vampire, and User-to-Root (U2R) attacks, in a Mobile Ad hoc Network (MANET). We accomplish attacker(s) detection and prevention percentage upto 99% in varied node density scenarios 50/100/150.
2021-08-02
Terai, Takeru, Yoshida, Masami, Ramonet, Alberto Gallegos, Noguchi, Taku.  2020.  Blackhole Attack Cooperative Prevention Method in MANETs. 2020 Eighth International Symposium on Computing and Networking Workshops (CANDARW). :60–66.
Blackhole (BH) attacks are one of the most serious threats in mobile ad-hoc networks. A BH is a security attack in which a malicious node absorbs data packets and sends fake routing information to neighboring nodes. BH attacks are widely studied. However, existing defense methods wrongfully assume that BH attacks cannot overcome the most common defense approaches. A new wave of BH attacks is known as smart BH attacks. In this study, we used a highly aggressive type of BH attack that can predict sequence numbers to overcome traditional detection methods that set a threshold to sequence numbers. To protect the network from this type of BH attack, we propose a detection-and-prevention method that uses local information shared with neighboring nodes. Our experiments show that the proposed method successfully detects and contains even smart BH threats. Consequently, the attack success rate decreases.
Sharma, Nisha, Sharma, Durga Prasad, Sharma, Manish.  2020.  Wormhole Formation and Simulation in Dynamic Source Routing Protocol using NS3. 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART). :318–322.
Mobile Ad hoc networks (MANET) are becoming extremely popular because of the expedient features that also make them more exposed to various kinds of security attacks. The Wormhole attack is considered to be the most unsafe attack due to its unusual pattern of tunnel creation between two malevolent nodes. In it, one malevolent node attracts all the traffic towards the tunnel and forwards it to another malevolent node at the other end of the tunnel and replays them again in the network. Once the Wormhole tunnel is created it can launch different kind of other attacks such as routing attack, packet dropping, spoofing etc. In past few years a lot of research is done for securing routing protocols. Dynamic Source Routing (DSR) protocol is considered foremost MANET routing protocols. In this paper we are forming the wormhole tunnel in which malevolent nodes use different interfaces for communication in DSR protocol. NS3 simulator is being used for the analysis of the DSR routing protocol under the wormhole attack. This paper provides better understanding of the wormhole attack in DSR protocol which can benefit further research.
Thapar, Shruti, Sharma, Sudhir Kumar.  2020.  Direct Trust-based Detection Algorithm for Preventing Jellyfish Attack in MANET. 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA). :749–753.
The dynamic and adaptable characteristics of mobile ad hoc networks have made it a significant field for deploying various applications in wireless sensor networks. Increasing popularity of the portable devices is the main reason for the development of mobile ad hoc networks. Furthermore, the network does not require a fixed architecture and it is easy to deploy. This type of network is highly vulnerable to cyber-attacks as the nodes communicate with each other through a Wireless medium. The most critical attack in ad hoc network is jellyfish attack. In this research we have proposed a Direct Trust-based Detection Algorithm to detect and prevent jellyfish attack in MANET.
2021-03-09
Naveena, S., Senthilkumar, C., Manikandan, T..  2020.  Analysis and Countermeasures of Black-Hole Attack in MANET by Employing Trust-Based Routing. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :1222–1227.
A self-governing system consisting of mobile nodes that exchange information within a cellular area and is known as a mobile ad hoc network (MANET). Due to its dynamic nature, it is vulnerable to attacks and there is no fixed infrastructure. To transfer a data packet Ad-hoc On-Demand Distance Vector (AODV) is used and it's another form of a reactive protocol. The black-hole attack is a major attack that drastically decreases the packet delivery ratio during a data transaction in a routing environment. In this attack, the attacker's node acts as the shortest path to the target node itself. If the attacker node receives the data packet from the source node, all obtained data packets are excluded from a routing network. A trust-based routing scheme is suggested to ensure secure routing. This routing scheme is divided into two stages, i.e., the Data retrieval (DR), to identify and preserve each node data transfer mechanism in a routing environment and route development stage, to predict a safe path to transmit a data packet to the target node.
Chakravorty, R., Prakash, J..  2020.  A Review on Prevention and Detection Schemes for Black Hole Attacks in MANET. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :801–806.
Mobile Ad hoc Network (MANET) is one of the emerging technologies to communicate between nodes and its decentralized structure, self-configuring nature are the few properties of this Ad hoc network. Due to its undefined structure, it has found its usage in the desired and temporary communication network. MANET has many routing protocols governing it and due to its changing topology, there can be many issues arise in recent times. Problems like no central node, limited energy, and the quality of service, performance, design issues, and security challenges have been bugging the researchers. The black hole attacks are the kind that cause ad hoc network to be at loss of information and make the source to believe that it has the actual least distance path to the destination, but in real scenario the packets do not get forwarded to neighbouring nodes. In this paper, we have discussed different solutions over the past years to deal with such attacks. A summary of the schemes with their results and drawbacks in terms of performance metrics is also given.
Oakley, I..  2020.  Solutions to Black Hole Attacks in MANETs. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1–6.
Self-organising networks, such as mobile ad-hoc networks (MANETs), are growing more and more in importance each day. However, due to their nature and constraints MANETs are vulnerable to a wide array of attacks, such as black hole attacks. Furthermore, there are numerous routing protocols in use in MANETs, and what works for one might not for another. In this paper, we present a review of previous surveys of black hole attack solutions, followed by a collation of recently published papers categorised by original routing protocol and evaluated on a set of common metrics. Finally, we suggest areas for further research.
2020-12-28
Sonekar, S. V., Pal, M., Tote, M., Sawwashere, S., Zunke, S..  2020.  Computation Termination and Malicious Node Detection using Finite State Machine in Mobile Adhoc Networks. 2020 7th International Conference on Computing for Sustainable Global Development (INDIACom). :156—161.

The wireless technology has knocked the door of tremendous usage and popularity in the last few years along with a high growth rate for new applications in the networking domain. Mobile Ad hoc Networks (MANETs) is solitary most appealing, alluring and challenging field where in the participating nodes do not require any active, existing and centralized system or rigid infrastructure for execution purpose and thus nodes have the moving capability on arbitrary basis. Radio range nodes directly communicate with each other through the wireless links whereas outside range nodes uses relay principle for communication. Though it is a rigid infrastructure less environment and has high growth rate but security is a major concern and becomes vital part of providing hostile free environment for communication. The MANET imposes several prominent challenges such as limited energy reserve, resource constraints, highly dynamic topology, sharing of wireless medium, energy inefficiency, recharging of the batteries etc. These challenges bound to make MANET more susceptible, more close to attacks and weak unlike the wired line networks. Theresearch paperismainly focused on two aspects, one is computation termination of cluster head algorithm and another is use of finite state machine for attacks identification.

Sharma, V., Renu, Shree, T..  2020.  An adaptive approach for Detecting Blackhole using TCP Analysis in MANETs. 2nd International Conference on Data, Engineering and Applications (IDEA). :1—5.

From recent few years, need of information security is realized by society amd researchers specially in multi-path, unstructured networks as Mobile Ad-hoc Network. Devices connected in such network are self-configuring and small in size and can communicate in infra less environment. Architecture is very much dynamic and absence of central controlling authority puts challenges to the network by making more vulnerable for various threats and attacks in order to exploit the function of the network. The paper proposes, TCP analysis against very popular attack i.e. blackhole attack. Under different circumstance, reliable transport layer protocol TCP is analyzed for the effects of the attack on adhoc network. Performance has been measured using metrics of average throughput, normalized routing load and end to end delay and conclusions have been drawn based on that.

Kumar, R., Mishra, A. K., Singh, D. K..  2020.  Packet Loss Avoidance in Mobile Adhoc Network by using Trusted LDoS Techniques. 2nd International Conference on Data, Engineering and Applications (IDEA). :1—5.
Packet loss detection and prevention is full-size module of MANET protection systems. In trust based approach routing choices are managed with the aid of an unbiased have faith table. Traditional trust-based techniques unsuccessful to notice the essential underlying reasons of a malicious events. AODV is an approachable routing set of guidelines i.e.it finds a supply to an endpoint only on request. LDoS cyber-attacks ship assault statistics packets after period to time in a brief time period. The community multifractal ought to be episodic when LDoS cyber-attacks are hurled unpredictably. Real time programs in MANET necessitate certain QoS advantages, such as marginal end-to-end facts packet interval and unobjectionable records forfeiture. Identification of malevolent machine, information security and impenetrable direction advent in a cell system is a key tasks in any wi-fi network. However, gaining the trust of a node is very challenging, and by what capability it be able to get performed is quiet ambiguous. This paper propose a modern methodology to detect and stop the LDoS attack and preserve innocent from wicked nodes. In this paper an approach which will improve the safety in community by identifying the malicious nodes using improved quality grained packet evaluation method. The approach also multiplied the routing protection using proposed algorithm The structure also accomplish covered direction-finding to defend Adhoc community against malicious node. Experimentally conclusion factor out that device is fine fabulous for confident and more advantageous facts communication.
Murugan, S., Jeyakarthic, M..  2020.  An Energy Efficient Security Aware Clustering approach using Fuzzy Logic for Mobile Adhoc Networks. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :551—555.

Security awareness and energy efficiency are two crucial optimization issues present in MANET where the network topology gets adequately changed and is not predictable which affects the lifetime of the MANET. They are extensively analyzed to improvise the lifetime of the MANET. This paper concentrates on the design of an energy-efficient security-aware fuzzy-based clustering (SFLC) technique to make the network secure and energy-efficient. The selection of cluster heads (CHD) process using fuzzy logic (FL) involves the trust factor as an important input variable. Once the CHDs are elected successfully, clusters will be constructed and start to communication with one another as well as the base station (BS). The presented SFLC model is simulated using NS2 and the performance is validated in terms of energy, lifetime and computation time.