Baranov, Nikita, Bashkin, Mikhail, Bashkin, Vladimir.
2019.
Self-Healing Anonymous Routing in Unstable Sensor Networks. 2019 7th International Conference on Future Internet of Things and Cloud (FiCloud). :88–95.
A lightweight decentralized adaptive anonymous routing scheme is presented that combines onion routing for the initial global route request and threshold-based secret sharing for the subsequent local route tuning/healing. The encrypted propagation of the partial routes information allows to handle minor network topology changes locally, without new route requests and with a limited deanonymization of participants. The intermediate node can discover/decrypt the local routing data only together with its designated neigbour (threshold-based secret sharing is used) and only in the event of a topology change.
Yin, Mingyong, Wang, Qixu, Cao, Mingsheng.
2019.
An Attack Vector Evaluation Method for Smart City Security Protection. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–7.
In the network security risk assessment on critical information infrastructure of smart city, to describe attack vectors for predicting possible initial access is a challenging task. In this paper, an attack vector evaluation model based on weakness, path and action is proposed, and the formal representation and quantitative evaluation method are given. This method can support the assessment of attack vectors based on known and unknown weakness through combination of depend conditions. In addition, defense factors are also introduced, an attack vector evaluation model of integrated defense is proposed, and an application example of the model is given. The research work in this paper can provide a reference for the vulnerability assessment of attack vector.
Papakonstantinou, Nikolaos, Linnosmaa, Joonas, Alanen, Jarmo, Bashir, Ahmed Z., O'Halloran, Bryan, Van Bossuyt, Douglas L..
2019.
Early Hybrid Safety and Security Risk Assessment Based on Interdisciplinary Dependency Models. 2019 Annual Reliability and Maintainability Symposium (RAMS). :1–7.
Safety and security of complex critical infrastructures are very important for economic, environmental and social reasons. The complexity of these systems introduces difficulties in the identification of safety and security risks that emerge from interdisciplinary interactions and dependencies. The discovery of safety and security design weaknesses late in the design process and during system operation can lead to increased costs, additional system complexity, delays and possibly undesirable compromises to address safety and security weaknesses.
Roukounaki, Aikaterini, Efremidis, Sofoklis, Soldatos, John, Neises, Juergen, Walloschke, Thomas, Kefalakis, Nikos.
2019.
Scalable and Configurable End-to-End Collection and Analysis of IoT Security Data : Towards End-to-End Security in IoT Systems. 2019 Global IoT Summit (GIoTS). :1–6.
In recent years, there is a surge of interest in approaches pertaining to security issues of Internet of Things deployments and applications that leverage machine learning and deep learning techniques. A key prerequisite for enabling such approaches is the development of scalable infrastructures for collecting and processing security-related datasets from IoT systems and devices. This paper introduces such a scalable and configurable data collection infrastructure for data-driven IoT security. It emphasizes the collection of (security) data from different elements of IoT systems, including individual devices and smart objects, edge nodes, IoT platforms, and entire clouds. The scalability of the introduced infrastructure stems from the integration of state of the art technologies for large scale data collection, streaming and storage, while its configurability relies on an extensible approach to modelling security data from a variety of IoT systems and devices. The approach enables the instantiation and deployment of security data collection systems over complex IoT deployments, which is a foundation for applying effective security analytics algorithms towards identifying threats, vulnerabilities and related attack patterns.
Nouichi, Douae, Abdelsalam, Mohamed, Nasir, Qassim, Abbas, Sohail.
2019.
IoT Devices Security Using RF Fingerprinting. 2019 Advances in Science and Engineering Technology International Conferences (ASET). :1–7.
Internet of Things (IoT) devices industry is rapidly growing, with an accelerated increase in the list of manufacturers offering a wide range of smart devices selected to enhance end-users' standard of living. Security remains an after-thought in these devices resulting in vulnerabilities. While there exists a cryptographic protocol designed to solve such authentication problem, the computational complexity of cryptographic protocols and scalability problems make almost all cryptography-based authentication protocols impractical for IoT. Wireless RFF (Radio Frequency Fingerprinting) comes as a physical layer-based security authentication method that improves wireless security authentication, which is especially useful for the power and computing limited devices. As a proof-of-concept, this paper proposes a universal SDR (software defined Radio)-based inexpensive implementation intended to sense emitted wireless signals from IoT devices. Our approach is validated by extracting mobile phone signal bursts under different user-dedicated modes. The proposed setup is well adapted to accurately capture signals from different telecommunication standards. To ensure a unique identification of IoT devices, this paper also provides an optimum set of features useful to generate the device identity fingerprint.
Hadar, Ethan, Hassanzadeh, Amin.
2019.
Big Data Analytics on Cyber Attack Graphs for Prioritizing Agile Security Requirements. 2019 IEEE 27th International Requirements Engineering Conference (RE). :330–339.
In enterprise environments, the amount of managed assets and vulnerabilities that can be exploited is staggering. Hackers' lateral movements between such assets generate a complex big data graph, that contains potential hacking paths. In this vision paper, we enumerate risk-reduction security requirements in large scale environments, then present the Agile Security methodology and technologies for detection, modeling, and constant prioritization of security requirements, agile style. Agile Security models different types of security requirements into the context of an attack graph, containing business process targets and critical assets identification, configuration items, and possible impacts of cyber-attacks. By simulating and analyzing virtual adversary attack paths toward cardinal assets, Agile Security examines the business impact on business processes and prioritizes surgical requirements. Thus, handling these requirements backlog that are constantly evaluated as an outcome of employing Agile Security, gradually increases system hardening, reduces business risks and informs the IT service desk or Security Operation Center what remediation action to perform next. Once remediated, Agile Security constantly recomputes residual risk, assessing risk increase by threat intelligence or infrastructure changes versus defender's remediation actions in order to drive overall attack surface reduction.
Pandelea, Alexandru-Ionut, Chiroiu, Mihai-Daniel.
2019.
Password Guessing Using Machine Learning on Wearables. 2019 22nd International Conference on Control Systems and Computer Science (CSCS). :304–311.
Wearables are now ubiquitous items equipped with a multitude of sensors such as GPS, accelerometer, or Bluetooth. The raw data from this sensors are typically used in a health context. However, we can also use it for security purposes. In this paper, we present a solution that aims at using data from the sensors of a wearable device to identify the password a user is typing on a keyboard by using machine learning algorithms. Hence, the purpose is to determine whether a malicious third party application could extract sensitive data through the raw data that it has access to.
Zhang, Lili, Han, Dianqi, Li, Ang, Li, Tao, Zhang, Yan, Zhang, Yanchao.
2019.
WristUnlock: Secure and Usable Smartphone Unlocking with Wrist Wearables. 2019 IEEE Conference on Communications and Network Security (CNS). :28–36.
We propose WristUnlock, a novel technique that uses a wrist wearable to unlock a smartphone in a secure and usable fashion. WristUnlock explores both the physical proximity and secure Bluetooth connection between the smartphone and wrist wearable. There are two modes in WristUnlock with different security and usability features. In the WristRaise mode, the user raises his smartphone in his natural way with the same arm carrying the wrist wearable; the smartphone gets unlocked if the acceleration data on the smartphone and wrist wearable satisfy an anticipated relationship specific to the user himself. In the WristTouch mode, the wrist wearable sends a random number to the smartphone through both the Bluetooth channel and a touch-based physical channel; the smartphone gets unlocked if the numbers received from both channels are equal. We thoroughly analyze the security of WristUnlock and confirm its high efficacy through detailed experiments.
Hassan, Mehmood, Mansoor, Khwaja, Tahir, Shahzaib, Iqbal, Waseem.
2019.
Enhanced Lightweight Cloud-assisted Mutual Authentication Scheme for Wearable Devices. 2019 International Conference on Applied and Engineering Mathematics (ICAEM). :62–67.
With the emergence of IoT, wearable devices are drawing attention and becoming part of our daily life. These wearable devices collect private information about their wearers. Mostly, a secure authentication process is used to verify a legitimate user that relies on the mobile terminal. Similarly, remote cloud services are used for verification and authentication of both wearable devices and wearers. Security is necessary to preserve the privacy of users. Some traditional authentication protocols are proposed which have vulnerabilities and are prone to different attacks like forgery, de-synchronization, and un-traceability issues. To address these vulnerabilities, recently, Wu et al. (2017) proposed a cloud-assisted authentication scheme which is costly in terms of computations required. Therefore this paper proposed an improved, lightweight and computationally efficient authentication scheme for wearable devices. The proposed scheme provides similar level of security as compared to Wu's (2017) scheme but requires 41.2% lesser computations.
Wang, Xinda, Sun, Kun, Batcheller, Archer, Jajodia, Sushil.
2019.
Detecting "0-Day" Vulnerability: An Empirical Study of Secret Security Patch in OSS. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :485–492.
Security patches in open source software (OSS) not only provide security fixes to identified vulnerabilities, but also make the vulnerable code public to the attackers. Therefore, armored attackers may misuse this information to launch N-day attacks on unpatched OSS versions. The best practice for preventing this type of N-day attacks is to keep upgrading the software to the latest version in no time. However, due to the concerns on reputation and easy software development management, software vendors may choose to secretly patch their vulnerabilities in a new version without reporting them to CVE or even providing any explicit description in their change logs. When those secretly patched vulnerabilities are being identified by armored attackers, they can be turned into powerful "0-day" attacks, which can be exploited to compromise not only unpatched version of the same software, but also similar types of OSS (e.g., SSL libraries) that may contain the same vulnerability due to code clone or similar design/implementation logic. Therefore, it is critical to identify secret security patches and downgrade the risk of those "0-day" attacks to at least "n-day" attacks. In this paper, we develop a defense system and implement a toolset to automatically identify secret security patches in open source software. To distinguish security patches from other patches, we first build a security patch database that contains more than 4700 security patches mapping to the records in CVE list. Next, we identify a set of features to help distinguish security patches from non-security ones using machine learning approaches. Finally, we use code clone identification mechanisms to discover similar patches or vulnerabilities in similar types of OSS. The experimental results show our approach can achieve good detection performance. A case study on OpenSSL, LibreSSL, and BoringSSL discovers 12 secret security patches.
Malik, Yasir, Campos, Carlos Renato Salim, Jaafar, Fehmi.
2019.
Detecting Android Security Vulnerabilities Using Machine Learning and System Calls Analysis. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :109–113.
Android operating systems have become a prime target for cyber attackers due to security vulnerabilities in the underlying operating system and application design. Recently, anomaly detection techniques are widely studied for security vulnerabilities detection and classification. However, the ability of the attackers to create new variants of existing malware using various masking techniques makes it harder to deploy these techniques effectively. In this research, we present a robust and effective vulnerabilities detection approach based on anomaly detection in a system calls of benign and malicious Android application. The anomaly in our study is type, frequency, and sequence of system calls that represent a vulnerability. Our system monitors the processes of benign and malicious application and detects security vulnerabilities based on the combination of parameters and metrics, i.e., type, frequency and sequence of system calls to classify the process behavior as benign or malign. The detection algorithm detects the anomaly based on the defined scoring function f and threshold ρ. The system refines the detection process by applying machine learning techniques to find a combination of system call metrics and explore the relationship between security bugs and the pattern of system calls detected. The experiment results show the detection rate of the proposed algorithm based on precision, recall, and f-score for different machine learning algorithms.
Chen, Lu, Ma, Yuanyuan, SHAO, Zhipeng, CHEN, Mu.
2019.
Research on Mobile Application Local Denial of Service Vulnerability Detection Technology Based on Rule Matching. 2019 IEEE International Conference on Energy Internet (ICEI). :585–590.
Aiming at malicious application flooding in mobile application market, this paper proposed a method based on rule matching for mobile application local denial of service vulnerability detection. By combining the advantages of static detection and dynamic detection, static detection adopts smali abstract syntax tree as rule matching object. This static detection method has higher code coverage and better guarantees the integrity of mobile application information. The dynamic detection performs targeted hook verification on the static detection result, which improves the accuracy of the detection result and saves the test workload at the same time. This dynamic detection method has good scalability, can be upgraded with discovery and variants of the vulnerability. Through experiments, it is verified that the mobile application with this vulnerability can be accurately found in a large number of mobile applications, and the effectiveness of the system is verified.
Tunde-Onadele, Olufogorehan, He, Jingzhu, Dai, Ting, Gu, Xiaohui.
2019.
A Study on Container Vulnerability Exploit Detection. 2019 IEEE International Conference on Cloud Engineering (IC2E). :121–127.
Containers have become increasingly popular for deploying applications in cloud computing infrastructures. However, recent studies have shown that containers are prone to various security attacks. In this paper, we conduct a study on the effectiveness of various vulnerability detection schemes for containers. Specifically, we implement and evaluate a set of static and dynamic vulnerability attack detection schemes using 28 real world vulnerability exploits that widely exist in docker images. Our results show that the static vulnerability scanning scheme only detects 3 out of 28 tested vulnerabilities and dynamic anomaly detection schemes detect 22 vulnerability exploits. Combining static and dynamic schemes can further improve the detection rate to 86% (i.e., 24 out of 28 exploits). We also observe that the dynamic anomaly detection scheme can achieve more than 20 seconds lead time (i.e., a time window before attacks succeed) for a group of commonly seen attacks in containers that try to gain a shell and execute arbitrary code.
Marchang, Jims, Ibbotson, Gregg, Wheway, Paul.
2019.
Will Blockchain Technology Become a Reality in Sensor Networks? 2019 Wireless Days (WD). :1–4.
The need for sensors to deliver, communicate, collect, alert, and share information in various applications has made wireless sensor networks very popular. However, due to its limited resources in terms of computation power, battery life and memory storage of the sensor nodes, it is challenging to add security features to provide the confidentiality, integrity, and availability. Blockchain technology ensures security and avoids the need of any trusted third party. However, applying Blockchain in a resource-constrained wireless sensor network is a challenging task because Blockchain is power, computation, and memory hungry in nature and demands heavy bandwidth due to control overheads. In this paper, a new routing and a private communication Blockchain framework is designed and tested with Constant Bit rate (CBR). The proposed Load Balancing Multi-Hop (LBMH) routing shares and enhances the battery life of the Cluster Heads and reduce control overhead during Block updates, but due to limited storage and energy of the sensor nodes, Blockchain in sensor networks may never become a reality unless computation, storage and battery life are readily available at low cost.
Johnson, Ashley, Molloy, Joseph, Yunes, Jonathan, Puthuparampil, Joseph, Elleithy, Abdelrahman.
2019.
Security in Wireless Sensors Networks. 2019 IEEE Long Island Systems, Applications and Technology Conference (LISAT). :1–3.
Many routing mechanisms of the wireless sensor network have been suggested in the literature, but there has not been a successful one that was designed with security. In this paper, we discuss the vulnerabilities of wireless sensor networks, how attackers can exploit these vulnerabilities, and the solutions to defend against these attacks. Furthermore, we will suggest solutions and measures secure routing mechanisms in sensor networks and study how it will affect it positively.
Lin, Yun, Chang, Jie.
2019.
Improving Wireless Network Security Based On Radio Fingerprinting. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :375–379.
With the rapid development of the popularity of wireless networks, there are also increasing security threats that follow, and wireless network security issues are becoming increasingly important. Radio frequency fingerprints generated by device tolerance in wireless device transmitters have physical characteristics that are difficult to clone, and can be used for identity authentication of wireless devices. In this paper, we propose a radio frequency fingerprint extraction method based on fractional Fourier transform for transient signals. After getting the features of the signal, we use RPCA to reduce the dimension of the features, and then use KNN to classify them. The results show that when the SNR is 20dB, the recognition rate of this method is close to 100%.
Jyothi, R., Cholli, Nagaraj G..
2019.
New Approach to Secure Cluster Heads in Wireless Sensor Networks. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :1097–1101.
This Wireless Sensor Network is a network of devices that communicates the information gathered from a monitored field through wireless links. Small size sensor nodes constitute wireless sensor networks. A Sensor is a device that responds and detects some type of input from both the physical or environmental conditions, such as pressure, heat, light, etc. Applications of wireless sensor networks include home automation, street lighting, military, healthcare and industrial process monitoring. As wireless sensor networks are distributed across large geographical area, these are vulnerable to various security threats. This affects the performance of the wireless sensor networks. The impact of security issues will become more critical if the network is used for mission-critical applications like tactical battlefield. In real life deployment scenarios, the probability of failure of nodes is more. As a result of resource constraints in the sensor nodes, traditional methods which involve large overhead computation and communication are not feasible in WSNs. Hence, design and deployment of secured WSNs is a challenging task. Attacks on WSNs include attack on confidentiality, integrity and availability. There are various types of architectures that are used to deploy WSNs. Some of them are data centric, hierarchical, location based, mobility based etc. This work discusses the security issue of hierarchical architecture and proposes a solution. In hierarchical architectures, sensor nodes are grouped to form clusters. Intra-cluster communication happens through cluster heads. Cluster heads also facilitate inter-cluster communication with other cluster heads. Aggregation of data generated by sensor nodes is done by cluster heads. Aggregated data also get transferred to base through multi-hop approach in most cases. Cluster heads are vulnerable to various malicious attacks and this greatly affects the performance of the wireless sensor network. The proposed solution identifies attacked cluster head and changes the CH by identifying the fittest node using genetic algorithm based search.
Yapar, Büşranur, Güven, Ebu Yusuf, Aydın, Muhammed Ali.
2019.
Security on Wireless Sensor Network. 2019 4th International Conference on Computer Science and Engineering (UBMK). :693–698.
Wireless sensor networks are called wireless networks consisting of low-cost sensor nodes that use limited resources, collect and distribute data. Wireless sensor networks make observation and control of physical environments from distance easier. They are used in a variety of areas, such as environmental surveillance, military purposes, and the collection of information in specific areas. While the low cost of sensor nodes allows it to spread and increase it's quantitative, battery and computational constraints, noise and manipulation threats from the environment cause various challenges in wireless sensor applications. To overcome these challenges, researches have conducted a lot of researches on various fields like power consumption, use of resources and security approaches. In these studies, routing, placement algorithms and system designs are generally examined for efficient energy consumption. In this article, the relationship between the security of sensor networks and efficient resource usage and various scenarios are presented.
Siasi, Nazli, Aldalbahi, Adel, Jasim, Mohammed A..
2019.
Reliable Transmission Scheme Against Security Attacks in Wireless Sensor Networks. 2019 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
Routing protocols in wireless sensor network are vulnerable to various malicious security attacks that can degrade network performance and lifetime. This becomes more important in cluster routing protocols that is composed of multiple node and cluster head, such as low energy adaptive clustering hierarchy (LEACH) protocol. Namely, if an attack succeeds in failing the cluster head, then the entire set of nodes fail. Therefore, it is necessary to develop robust recovery schemes to overcome security attacks and recover packets at short times. Hence this paper proposes a detection and recovery scheme for selective forwarding attacks in wireless sensor networks using LEACH protocol. The proposed solution features near-instantaneous recovery times, without the requirement for feedback or retransmissions once an attack occurs.
Byun, Minjae, Lee, Yongjun, Choi, Jin-Young.
2019.
Risk and avoidance strategy for blocking mechanism of SDN-based security service. 2019 21st International Conference on Advanced Communication Technology (ICACT). :187–190.
Software-Defined Network (SDN) is the dynamic network technology to address the issues of traditional networks. It provides centralized view of the whole network through decoupling the control planes and data planes of a network. Most SDN-based security services globally detect and block a malicious host based on IP address. However, the IP address is not verified during the forwarding process in most cases and SDN-based security service may block a normal host with forged IP address in the whole network, which means false-positive. In this paper, we introduce an attack scenario that uses forged packets to make the security service consider a victim host as an attacker so that block the victim. We also introduce cost-effective risk avoidance strategy.
Zheng-gang, He, Jing-ni, Guo.
2019.
Security Risk Assessment of Multimodal Transport Network Based on WBS-RBS and PFWA Operator. 2019 4th International Conference on Intelligent Transportation Engineering (ICITE). :203–206.
In order to effectively assess the security risks in multimodal transport networks, a security risk assessment method based on WBS-RBS and Pythagorean Fuzzy Weighted Average (PFWA) operator is proposed. The risk matrix 0-1 assignment of WBS-RBS is replaced by the Pythagorean Fuzzy Number (PFLN) scored by experts. The security risk ranking values of multimodal transport network are calculated from two processes of whole-stage and phased, respectively, and the security risk assessment results are obtained. Finally, an example of railway-highway-waterway intermodal transportation process of automobile parts is given to verify the validity of the method, the results show that the railway transportation is more stable than the waterway transportation, and the highway transportation has the greatest security risk, and for different security risk factors, personnel risk has the greatest impact. The risk of goods will change with the change of the attributes of goods, and the security risk of storage facilities is the smallest.
Gharehbaghi, Koorosh, Myers, Matt.
2019.
Intelligent System Intricacies: Safety, Security and Risk Management Apprehensions of ITS. 2019 8th International Conference on Industrial Technology and Management (ICITM). :37–40.
While the general idea of Intelligent Transportation System (ITS) is to employ suitable, sophisticated information and communications technologies, however, such tool also encompass many system complexities. Fittingly, this paper aims to highlight the most contemporary system complications of ITS and in doing so, will also underline the safety, security and risk management concerns. More importantly, effectively treating such issues will ultimately improve the reliability and efficiency of transportation systems. Whereas such issues are among the most significant subjects for any intelligent system, for ITS in particular they the most dominant. For such intelligent systems, the safety, security and risk management issues must not only be decidedly prioritized, but also methodically integrated. As a part of such ITS integration, this paper will delicately examine the Emergency Management System (EMS) development and application. Accurate EMS is not only a mandatory feature of intelligent systems, but it is a fundamental component of ITS which will vigilantly respond to safety, security and risk management apprehensions. To further substantiate such scheme, the Sydney Metro's EMS will be also conferred. It was determined that, the Sydney Metro's EMS although highly advanced, it was also vigilantly aligned with specific designated safety, security and risk management strategies.
Stoykov, Stoyko.
2019.
Risk Management as a Strategic Management Element in the Security System. 2019 International Conference on Creative Business for Smart and Sustainable Growth (CREBUS). :1–4.
Strategic management and security risk management are part of the general government of the country, and therefore it is not possible to examine it separately and even if it was, one separate examination would not have give us a complete idea of how to implement this process. A modern understanding of the strategic security management requires not only continuous efforts to improve security policy formation and implementation but also new approaches and particular solutions to modernize the security system by making it adequate to the requirements of the dynamic security environment.
Moquin, S. J., Kim, SangYun, Blair, Nicholas, Farnell, Chris, Di, Jia, Mantooth, H. Alan.
2019.
Enhanced Uptime and Firmware Cybersecurity for Grid-Connected Power Electronics. 2019 IEEE CyberPELS (CyberPELS). :1–6.
A distributed energy resource prototype is used to show cybersecurity best practices. These best practices include straightforward security techniques, such as encrypted serial communication. The best practices include more sophisticated security techniques, such as a method to evaluate and respond to firmware integrity at run-time. The prototype uses embedded Linux, a hardware-assisted monitor, one or more digital signal processors, and grid-connected power electronics. Security features to protect communication, firmware, power flow, and hardware are developed. The firmware run-time integrity security is presently evaluated, and shown to maintain power electronics uptime during firmware updating. The firmware run-time security feature can be extended to allow software rejuvenation, multi-mission controls, and greater flexibility and security in controls.
Facon, Adrien, Guilley, Sylvain, Ngo, Xuan-Thuy, Perianin, Thomas.
2019.
Hardware-enabled AI for Embedded Security: A New Paradigm. 2019 3rd International Conference on Recent Advances in Signal Processing, Telecommunications Computing (SigTelCom). :80–84.
As chips become more and more connected, they are more exposed (both to network and to physical attacks). Therefore one shall ensure they enjoy a sufficient protection level. Security within chips is accordingly becoming a hot topic. Incident detection and reporting is one novel function expected from chips. In this talk, we explain why it is worthwhile to resort to Artificial Intelligence (AI) for security event handling. Drivers are the need to aggregate multiple and heterogeneous security sensors, the need to digest this information quickly to produce exploitable information, and so while maintaining a low false positive detection rate. Key features are adequate learning procedures and fast and secure classification accelerated by hardware. A challenge is to embed such security-oriented AI logic, while not compromising chip power budget and silicon area. This talk accounts for the opportunities permitted by the symbiotic encounter between chip security and AI.