Visible to the public Biblio

Found 4254 results

Filters: Keyword is security  [Clear All Filters]
2020-03-09
Hettiarachchi, Charitha, Do, Hyunsook.  2019.  A Systematic Requirements and Risks-Based Test Case Prioritization Using a Fuzzy Expert System. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security (QRS). :374–385.

The use of risk information can help software engineers identify software components that are likely vulnerable or require extra attention when testing. Some studies have shown that the requirements risk-based approaches can be effective in improving the effectiveness of regression testing techniques. However, the risk estimation processes used in such approaches can be subjective, time-consuming, and costly. In this research, we introduce a fuzzy expert system that emulates human thinking to address the subjectivity related issues in the risk estimation process in a systematic and an efficient way and thus further improve the effectiveness of test case prioritization. Further, the required data for our approach was gathered by employing a semi-automated process that made the risk estimation process less subjective. The empirical results indicate that the new prioritization approach can improve the rate of fault detection over several existing test case prioritization techniques, while reducing threats to subjective risk estimation.

Sion, Laurens, Van Landuyt, Dimitri, Wuyts, Kim, Joosen, Wouter.  2019.  Privacy Risk Assessment for Data Subject-Aware Threat Modeling. 2019 IEEE Security and Privacy Workshops (SPW). :64–71.
Regulatory efforts such as the General Data Protection Regulation (GDPR) embody a notion of privacy risk that is centered around the fundamental rights of data subjects. This is, however, a fundamentally different notion of privacy risk than the one commonly used in threat modeling which is largely agnostic of involved data subjects. This mismatch hampers the applicability of privacy threat modeling approaches such as LINDDUN in a Data Protection by Design (DPbD) context. In this paper, we present a data subject-aware privacy risk assessment model in specific support of privacy threat modeling activities. This model allows the threat modeler to draw upon a more holistic understanding of privacy risk while assessing the relevance of specific privacy threats to the system under design. Additionally, we propose a number of improvements to privacy threat modeling, such as enriching Data Flow Diagram (DFD) system models with appropriate risk inputs (e.g., information on data types and involved data subjects). Incorporation of these risk inputs in DFDs, in combination with a risk estimation approach using Monte Carlo simulations, leads to a more comprehensive assessment of privacy risk. The proposed risk model has been integrated in threat modeling tool prototype and validated in the context of a realistic eHealth application.
Cao, Yuan, Zhao, Yongli, Li, Jun, Lin, Rui, Zhang, Jie, Chen, Jiajia.  2019.  Reinforcement Learning Based Multi-Tenant Secret-Key Assignment for Quantum Key Distribution Networks. 2019 Optical Fiber Communications Conference and Exhibition (OFC). :1–3.
We propose a reinforcement learning based online multi-tenant secret-key assignment algorithm for quantum key distribution networks, capable of reducing tenant-request blocking probability more than half compared to the benchmark heuristics.
Hăjmăȿan, Gheorghe, Mondoc, Alexandra, Creț, Octavian.  2019.  Bytecode Heuristic Signatures for Detecting Malware Behavior. 2019 Conference on Next Generation Computing Applications (NextComp). :1–6.
For a long time, the most important approach for detecting malicious applications was the use of static, hash-based signatures. This approach provides a fast response time, has a low performance overhead and is very stable due to its simplicity. However, with the rapid growth in the number of malware, as well as their increased complexity in terms of polymorphism and evasion, the era of reactive security solutions started to fade in favor of new, proactive approaches such as behavior based detection. We propose a novel approach that uses an interpreter virtual machine to run proactive behavior heuristics from bytecode signatures, thus combining the advantages of behavior based detection with those of signatures. Based on our approximation, using this approach we succeeded to reduce by 85% the time required to update a behavior based detection solution to detect new threats, while continuing to benefit from the versatility of behavior heuristics.
Li, Chi, Zhou, Min, Gu, Zuxing, Gu, Ming, Zhang, Hongyu.  2019.  Ares: Inferring Error Specifications through Static Analysis. 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1174–1177.
Misuse of APIs happens frequently due to misunderstanding of API semantics and lack of documentation. An important category of API-related defects is the error handling defects, which may result in security and reliability flaws. These defects can be detected with the help of static program analysis, provided that error specifications are known. The error specification of an API function indicates how the function can fail. Writing error specifications manually is time-consuming and tedious. Therefore, automatic inferring the error specification from API usage code is preferred. In this paper, we present Ares, a tool for automatic inferring error specifications for C code through static analysis. We employ multiple heuristics to identify error handling blocks and infer error specifications by analyzing the corresponding condition logic. Ares is evaluated on 19 real world projects, and the results reveal that Ares outperforms the state-of-the-art tool APEx by 37% in precision. Ares can also identify more error specifications than APEx. Moreover, the specifications inferred from Ares help find dozens of API-related bugs in well-known projects such as OpenSSL, among them 10 bugs are confirmed by developers. Video: https://youtu.be/nf1QnFAmu8Q. Repository: https://github.com/lc3412/Ares.
Perner, Cora, Kinkelin, Holger, Carle, Georg.  2019.  Adaptive Network Management for Safety-Critical Systems. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :25–30.
Present networks within safety-critical systems rely on complex and inflexible network configurations. New technologies such as software-defined networking are more dynamic and offer more flexibility, but due care needs to be exercised to ensure that safety and security are not compromised by incorrect configurations. To this end, this paper proposes the use of pre-generated and optimized configuration templates. These provide alternate routes for traffic considering availability, resilience and timing constraints where network components fail due to attacks or faults.To obtain these templates, two heuristics based on Dijkstra's algorithm and an optimization algorithm providing the maximum resilience were investigated. While the configurations obtained through optimization yield appropriate templates, the heuristics investigated are not suitable to obtain configuration templates, since they cannot fulfill all requirements.
Calzavara, Stefano, Conti, Mauro, Focardi, Riccardo, Rabitti, Alvise, Tolomei, Gabriele.  2019.  Mitch: A Machine Learning Approach to the Black-Box Detection of CSRF Vulnerabilities. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :528–543.

Cross-Site Request Forgery (CSRF) is one of the oldest and simplest attacks on the Web, yet it is still effective on many websites and it can lead to severe consequences, such as economic losses and account takeovers. Unfortunately, tools and techniques proposed so far to identify CSRF vulnerabilities either need manual reviewing by human experts or assume the availability of the source code of the web application. In this paper we present Mitch, the first machine learning solution for the black-box detection of CSRF vulnerabilities. At the core of Mitch there is an automated detector of sensitive HTTP requests, i.e., requests which require protection against CSRF for security reasons. We trained the detector using supervised learning techniques on a dataset of 5,828 HTTP requests collected on popular websites, which we make available to other security researchers. Our solution outperforms existing detection heuristics proposed in the literature, allowing us to identify 35 new CSRF vulnerabilities on 20 major websites and 3 previously undetected CSRF vulnerabilities on production software already analyzed using a state-of-the-art tool.

Nadir, Ibrahim, Ahmad, Zafeer, Mahmood, Haroon, Asadullah Shah, Ghalib, Shahzad, Farrukh, Umair, Muhammad, Khan, Hassam, Gulzar, Usman.  2019.  An Auditing Framework for Vulnerability Analysis of IoT System. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :39–47.
Introduction of IoT is a big step towards the convergence of physical and virtual world as everyday objects are connected to the internet nowadays. But due to its diversity and resource constraint nature, the security of these devices in the real world has become a major challenge. Although a number of security frameworks have been suggested to ensure the security of IoT devices, frameworks for auditing this security are rare. We propose an open-source framework to audit the security of IoT devices covering hardware, firmware and communication vulnerabilities. Using existing open-source tools, we formulate a modular approach towards the implementation of the proposed framework. Standout features in the suggested framework are its modular design, extensibility, scalability, tools integration and primarily autonomous nature. The principal focus of the framework is to automate the process of auditing. The paper further mentions some tools that can be incorporated in different modules of the framework. Finally, we validate the feasibility of our framework by auditing an IoT device using proposed toolchain.
Flores, Denys A., Jhumka, Arshad.  2019.  Hybrid Logical Clocks for Database Forensics: Filling the Gap between Chain of Custody and Database Auditing. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :224–231.
Database audit records are important for investigating suspicious actions against transactional databases. Their admissibility as digital evidence depends on satisfying Chain of Custody (CoC) properties during their generation, collection and preservation in order to prevent their modification, guarantee action accountability, and allow third-party verification. However, their production has relied on auditing capabilities provided by commercial database systems which may not be effective if malicious users (or insiders) misuse their privileges to disable audit controls, and compromise their admissibility. Hence, in this paper, we propose a forensically-aware distributed database architecture that implements CoC properties as functional requirements to produce admissible audit records. The novelty of our proposal is the use of hybrid logical clocks, which compared with a previous centralised vector-clock architecture, has evident advantages as it (i) allows for more accurate provenance and causality tracking of insider actions, (ii) is more scalable in terms of system size, and (iii) although latency is higher (as expected in distributed environments), 70 per cent of user transactions are executed within acceptable latency intervals.
2020-03-04
Yao, Li, Peng, Linning, Li, Guyue, Fu, Hua, Hu, Aiqun.  2019.  A Simulation and Experimental Study of Channel Reciprocity in TDD and FDD Wiretap Channels. 2019 IEEE 19th International Conference on Communication Technology (ICCT). :113–117.

In recent years, secret key generation based on physical layer security has gradually attracted high attentions. The wireless channel reciprocity and eavesdropping attack are critical problems in secret key generation studies. In this paper, we carry out a simulation and experimental study of channel reciprocity in terms of measuring channel state information (CSI) in both time division duplexing (TDD) and frequency division duplexing (FDD) modes. In simulation study, a close eavesdropping wiretap channel model is introduced to evaluate the security of the CSI by using Pearson correlation coefficient. In experimental study, an indoor wireless CSI measurement system is built with N210 and X310 universal software radio peripheral (USRP) platforms. In TDD mode, theoretical analysis and most of experimental results show that the closer eavesdropping distance, the higher CSI correlation coefficient between eavesdropping channel and legitimate channel. However, in actual environment, when eavesdropping distance is too close (less than 1/4 wavelength), this CSI correlation seriously dropped. In FDD mode, both theoretical analysis and experimental results show that the wireless channel still owns some reciprocity. When frequency interval increases, the FDD channel reciprocity in actual environment is better than that in theoretical analysis.

Wiese, Moritz, Boche, Holger.  2019.  A Graph-Based Modular Coding Scheme Which Achieves Semantic Security. 2019 IEEE International Symposium on Information Theory (ISIT). :822–826.

It is investigated how to achieve semantic security for the wiretap channel. A new type of functions called biregular irreducible (BRI) functions, similar to universal hash functions, is introduced. BRI functions provide a universal method of establishing secrecy. It is proved that the known secrecy rates of any discrete and Gaussian wiretap channel are achievable with semantic security by modular wiretap codes constructed from a BRI function and an error-correcting code. A characterization of BRI functions in terms of edge-disjoint biregular graphs on a common vertex set is derived. This is used to study examples of BRI functions and to construct new ones.

2020-03-02
Wheeler, Thomas, Bharathi, Ezhil, Gil, Stephanie.  2019.  Switching Topology for Resilient Consensus Using Wi-Fi Signals. 2019 International Conference on Robotics and Automation (ICRA). :2018–2024.

Securing multi-robot teams against malicious activity is crucial as these systems accelerate towards widespread societal integration. This emerging class of ``physical networks'' requires research into new methods of security that exploit their physical nature. This paper derives a theoretical framework for securing multi-agent consensus against the Sybil attack by using the physical properties of wireless transmissions. Our frame-work uses information extracted from the wireless channels to design a switching signal that stochastically excludes potentially untrustworthy transmissions from the consensus. Intuitively, this amounts to selectively ignoring incoming communications from untrustworthy agents, allowing for consensus to the true average to be recovered with high probability if initiated after a certain observation time T0 that we derive. This work is different from previous work in that it allows for arbitrary malicious node values and is insensitive to the initial topology of the network so long as a connected topology over legitimate nodes in the network is feasible. We show that our algorithm will recover consensus and the true graph over the system of legitimate agents with an error rate that vanishes exponentially with time.

Swathi, P, Modi, Chirag, Patel, Dhiren.  2019.  Preventing Sybil Attack in Blockchain Using Distributed Behavior Monitoring of Miners. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.

Blockchain technology is useful with the record keeping of digital transactions, IoT, supply chain management etc. However, we have observed that the traditional attacks are possible on blockchain due to lack of robust identity management. We found that Sybil attack can cause severe impact in public/permissionless blockchain, in which an attacker can subvert the blockchain by creating a large number of pseudonymous identities (i.e. Fake user accounts) and push legitimate entities in the minority. Such virtual nodes can act like genuine nodes to create disproportionately large influence on the network. This may lead to several other attacks like DoS, DDoS etc. In this paper, a Sybil attack is demonstrated on a blockchain test bed with its impact on the throughput of the system. We propose a solution directive, in which each node monitors the behavior of other nodes and checks for the nodes which are forwarding the blocks of only particular user. Such nodes are quickly identified, blacklisted and notified to other nodes, and thus the Sybil attack can be restricted. We analyze experimental results of the proposed solution.

Lastinec, Jan, Keszeli, Mario.  2019.  Analysis of Realistic Attack Scenarios in Vehicle Ad-Hoc Networks. 2019 7th International Symposium on Digital Forensics and Security (ISDFS). :1–6.

The pace of technological development in automotive and transportation has been accelerating rapidly in recent years. Automation of driver assistance systems, autonomous driving, increasing vehicle connectivity and emerging inter-vehicular communication (V2V) are among the most disruptive innovations, the latter of which also raises numerous unprecedented security concerns. This paper is focused on the security of V2V communication in vehicle ad-hoc networks (VANET) with the main goal of identifying realistic attack scenarios and evaluating their impact, as well as possible security countermeasures to thwart the attacks. The evaluation has been done in OMNeT++ simulation environment and the results indicate that common attacks, such as replay attack or message falsification, can be eliminated by utilizing digital signatures and message validation. However, detection and mitigation of advanced attacks such as Sybil attack requires more complex approach. The paper also presents a simple detection method of Sybil nodes based on measuring the signal strength of received messages and maintaining reputation of sending nodes. The evaluation results suggest that the presented method is able to detect Sybil nodes in VANET and contributes to the improvement of traffic flow.

Vatanparvar, Korosh, Al Faruque, Mohammad Abdullah.  2019.  Self-Secured Control with Anomaly Detection and Recovery in Automotive Cyber-Physical Systems. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :788–793.

Cyber-Physical Systems (CPS) are growing with added complexity and functionality. Multidisciplinary interactions with physical systems are the major keys to CPS. However, sensors, actuators, controllers, and wireless communications are prone to attacks that compromise the system. Machine learning models have been utilized in controllers of automotive to learn, estimate, and provide the required intelligence in the control process. However, their estimation is also vulnerable to the attacks from physical or cyber domains. They have shown unreliable predictions against unknown biases resulted from the modeling. In this paper, we propose a novel control design using conditional generative adversarial networks that will enable a self-secured controller to capture the normal behavior of the control loop and the physical system, detect the anomaly, and recover from them. We experimented our novel control design on a self-secured BMS by driving a Nissan Leaf S on standard driving cycles while under various attacks. The performance of the design has been compared to the state-of-the-art; the self-secured BMS could detect the attacks with 83% accuracy and the recovery estimation error of 21% on average, which have improved by 28% and 8%, respectively.

Livshitz, Ilva I., Lontsikh, Pawel A., Lontsiklr, Natalia P., Karascv, Sergey, Golovina, Elena.  2019.  The Actual Problems of IT-Security Process Assurance. 2019 International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT QM IS). :140–144.

The article deals with the aspects of IT-security of business processes, using a variety of methodological tools, including Integrated Management Systems. Currently, all IMS consist of at least 2 management systems, including the IT-Security Management System. Typically, these IMS cover biggest part of the company business processes, but in practice, there are examples of different scales, even within a single facility. However, it should be recognized that the total number of such projects both in the Russian Federation and in the World is small. The security of business processes will be considered on the example of the incident of Norsk Hydro. In the article the main conclusions are given to confirm the possibility of security, continuity and recovery of critical business processes on the example of this incident.

Hamadah, Siham, Aqel, Darah.  2019.  A Proposed Virtual Private Cloud-Based Disaster Recovery Strategy. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :469–473.

Disaster is an unexpected event in a system lifetime, which can be made by nature or even human errors. Disaster recovery of information technology is an area of information security for protecting data against unsatisfactory events. It involves a set of procedures and tools for returning an organization to a state of normality after an occurrence of a disastrous event. So the organizations need to have a good plan in place for disaster recovery. There are many strategies for traditional disaster recovery and also for cloud-based disaster recovery. This paper focuses on using cloud-based disaster recovery strategies instead of the traditional techniques, since the cloud-based disaster recovery has proved its efficiency in providing the continuity of services faster and in less cost than the traditional ones. The paper introduces a proposed model for virtual private disaster recovery on cloud by using two metrics, which comprise a recovery time objective and a recovery point objective. The proposed model has been evaluated by experts in the field of information technology and the results show that the model has ensured the security and business continuity issues, as well as the faster recovery of a disaster that could face an organization. The paper also highlights the cloud computing services and illustrates the most benefits of cloud-based disaster recovery.

Zhang, Xuefei, Liu, Junjie, Li, Yijing, Cui, Qimei, Tao, Xiaofeng, Liu, Ren Ping.  2019.  Blockchain Based Secure Package Delivery via Ridesharing. 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.

Delivery service via ridesharing is a promising service to share travel costs and improve vehicle occupancy. Existing ridesharing systems require participating vehicles to periodically report individual private information (e.g., identity and location) to a central controller, which is a potential central point of failure, resulting in possible data leakage or tampering in case of controller break down or under attack. In this paper, we propose a Blockchain secured ridesharing delivery system, where the immutability and distributed architecture of the Blockchain can effectively prevent data tampering. However, such tamper-resistance property comes at the cost of a long confirmation delay caused by the consensus process. A Hash-oriented Practical Byzantine Fault Tolerance (PBFT) based consensus algorithm is proposed to improve the Blockchain efficiency and reduce the transaction confirmation delay from 10 minutes to 15 seconds. The Hash-oriented PBFT effectively avoids the double-spending attack and Sybil attack. Security analysis and simulation results demonstrate that the proposed Blockchain secured ridesharing delivery system offers strong security guarantees and satisfies the quality of delivery service in terms of confirmation delay and transaction throughput.

Ajayi, Oluwaseyi, Igbe, Obinna, Saadawi, Tarek.  2019.  Consortium Blockchain-Based Architecture for Cyber-Attack Signatures and Features Distribution. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0541–0549.

One of the effective ways of detecting malicious traffic in computer networks is intrusion detection systems (IDS). Though IDS identify malicious activities in a network, it might be difficult to detect distributed or coordinated attacks because they only have single vantage point. To combat this problem, cooperative intrusion detection system was proposed. In this detection system, nodes exchange attack features or signatures with a view of detecting an attack that has previously been detected by one of the other nodes in the system. Exchanging of attack features is necessary because a zero-day attacks (attacks without known signature) experienced in different locations are not the same. Although this solution enhanced the ability of a single IDS to respond to attacks that have been previously identified by cooperating nodes, malicious activities such as fake data injection, data manipulation or deletion and data consistency are problems threatening this approach. In this paper, we propose a solution that leverages blockchain's distributive technology, tamper-proof ability and data immutability to detect and prevent malicious activities and solve data consistency problems facing cooperative intrusion detection. Focusing on extraction, storage and distribution stages of cooperative intrusion detection, we develop a blockchain-based solution that securely extracts features or signatures, adds extra verification step, makes storage of these signatures and features distributive and data sharing secured. Performance evaluation of the system with respect to its response time and resistance to the features/signatures injection is presented. The result shows that the proposed solution prevents stored attack features or signature against malicious data injection, manipulation or deletion and has low latency.

Illi, Elmehdi, Bouanani, Faissal El, da Costa, Daniel Benevides, Sofotasios, Paschalis C., Ayoub, Fouad, Mezher, Kahtan, Muhaidat, Sami.  2019.  On the Physical Layer Security of a Regenerative Relay-Based mixed RF/UOWC. 2019 International Conference on Advanced Communication Technologies and Networking (CommNet). :1–7.
This paper investigates the secrecy outage performance of a dual-hop decode-and-forward (DF) mixed radio-frequency/underwater optical wireless communication (RF/UOWC) system. We consider a one-antenna source node ( S), communicating with one legitimate destination node (D) via a multi-antenna DF relay (R) node. In this context, the relay node receives the incoming signal from S via an RF link, which is subject to Rayleigh fading, then performes selection-combining (SC) followed by decoding and then re-encoding for transmission to the destination over a UOWC link, subject to mixture Exponential-Gamma fading. Under the assumption of eavesdroppers attempting to intercept the S-R (RF side), a closed-form expression for the secrecy outage probability is derived. Our analytical results are corroborated through computer simulations, which verifies their validity.
Zhao, Min, Li, Shunxin, Xiao, Dong, Zhao, Guoliang, Li, Bo, Liu, Li, Chen, Xiangyu, Yang, Min.  2019.  Consumption Ability Estimation of Distribution System Interconnected with Microgrids. 2019 IEEE International Conference on Energy Internet (ICEI). :345–350.
With fast development of distributed generation, storages and control techniques, a growing number of microgrids are interconnected with distribution networks. Microgrid capacity that a local distribution system can afford, is important to distribution network planning and microgrids well-organized integration. Therefore, this paper focuses on estimating consumption ability of distribution system interconnected with microgrids. The method to judge rationality of microgrids access plan is put forward, and an index system covering operation security, power quality and energy management is proposed. Consumption ability estimation procedure based on rationality evaluation and interactions is built up then, and requirements on multi-scenario simulation are presented. Case study on a practical distribution system design with multi-microgrids guarantees the validity and reasonableness of the proposed method and process. The results also indicate construction and reinforcement directions for the distribution network.
Sultana, Kazi Zakia, Chong, Tai-Yin.  2019.  A Proposed Approach to Build an Automated Software Security Assessment Framework using Mined Patterns and Metrics. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :176–181.

Software security is a major concern of the developers who intend to deliver a reliable software. Although there is research that focuses on vulnerability prediction and discovery, there is still a need for building security-specific metrics to measure software security and vulnerability-proneness quantitatively. The existing methods are either based on software metrics (defined on the physical characteristics of code; e.g. complexity or lines of code) which are not security-specific or some generic patterns known as nano-patterns (Java method-level traceable patterns that characterize a Java method or function). Other methods predict vulnerabilities using text mining approaches or graph algorithms which perform poorly in cross-project validation and fail to be a generalized prediction model for any system. In this paper, we envision to construct an automated framework that will assist developers to assess the security level of their code and guide them towards developing secure code. To accomplish this goal, we aim to refine and redefine the existing nano-patterns and software metrics to make them more security-centric so that they can be used for measuring the software security level of a source code (either file or function) with higher accuracy. In this paper, we present our visionary approach through a series of three consecutive studies where we (1) will study the challenges of the current software metrics and nano-patterns in vulnerability prediction, (2) will redefine and characterize the nano-patterns and software metrics so that they can capture security-specific properties of code and measure the security level quantitatively, and finally (3) will implement an automated framework for the developers to automatically extract the values of all the patterns and metrics for the given code segment and then flag the estimated security level as a feedback based on our research results. We accomplished some preliminary experiments and presented the results which indicate that our vision can be practically implemented and will have valuable implications in the community of software security.

Ranaweera, Pasika, Jurcut, Anca Delia, Liyanage, Madhusanka.  2019.  Realizing Multi-Access Edge Computing Feasibility: Security Perspective. 2019 IEEE Conference on Standards for Communications and Networking (CSCN). :1–7.
Internet of Things (IoT) and 5G are emerging technologies that prompt a mobile service platform capable of provisioning billions of communication devices which enable ubiquitous computing and ambient intelligence. These novel approaches are guaranteeing gigabit-level bandwidth, ultra-low latency and ultra-high storage capacity for their subscribers. To achieve these limitations, ETSI has introduced the paradigm of Multi-Access Edge Computing (MEC) for creating efficient data processing architecture extending the cloud computing capabilities in the Radio Access Network (RAN). Despite the gained enhancements to the mobile network, MEC is subjected to security challenges raised from the heterogeneity of IoT services, intricacies in integrating virtualization technologies, and maintaining the performance guarantees of the mobile networks (i.e. 5G). In this paper, we are identifying the probable threat vectors in a typical MEC deployment scenario that comply with the ETSI standards. We analyse the identified threat vectors and propose solutions to mitigate them.
Alioto, Massimo, Taneja, Sachin.  2019.  Enabling Ubiquitous Hardware Security via Energy-Efficient Primitives and Systems : (Invited Paper). 2019 IEEE Custom Integrated Circuits Conference (CICC). :1–8.
Security down to hardware (HW) has become a fundamental requirement in highly-connected and ubiquitously deployed systems, as a result of the recent discovery of a wide range of vulnerabilities in commercial devices, as well as the affordability of several attacks that were traditionally considered unlikely. HW security is now a fundamental requirement in view of the massive attack surface that they expose, and the substantial power penalty entailed by solutions at higher levels of abstraction.In large-scale networks of connected devices, attacks need to be counteracted at low cost down to individual nodes, which need to be identified or authenticated securely, and protect confidentiality and integrity of the data that is sensed, stored, processed and wirelessly exchanged. In many security-sensitive applications, physical attacks against individual chips need to be counteracted to truly enable an end-to-end chain of trust from nodes to cloud and actuation (i.e., always-on security). These requirements have motivated the on-going global research and development effort to assure hardware security at low cost and power penalty down to low-end devices (i.e., ubiquitous security).This paper provides a fresh overview of the fundamentals, the design requirements and the state of the art in primitives for HW security. Challenges and future directions are discussed using recent silicon demonstrations as case studies.
Ullah, Rehmat, Ur Rehman, Muhammad Atif, Kim, Byung-Seo, Sonkoly, Balázs, Tapolcai, János.  2019.  On Pending Interest Table in Named Data Networking based Edge Computing: The Case of Mobile Augmented Reality. 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN). :263–265.
Future networks require fast information response time, scalable content distribution, security and mobility. In order to enable future Internet many key enabling technologies have been proposed such as Edge computing (EC) and Named Data Networking (NDN). In EC substantial compute and storage resources are placed at the edge of the network, in close proximity to end users. Similarly, NDN provides an alternative to traditional host centric IP architecture which seems a perfect candidate for distributed computation. Although NDN with EC seems a promising approach for enabling future Internet, it can cause various challenges such as expiry time of the Pending Interest Table (PIT) and non-trivial computation of the edge node. In this paper we discuss the expiry time and non-trivial computation in NDN based EC. We argue that if NDN is integrated in EC, then the PIT expiry time will be affected in relation with the processing time on the edge node. Our analysis shows that integrating NDN in EC without considering PIT expiry time may result in the degradation of network performance in terms of Interest Satisfaction Rate.