Visible to the public Biblio

Found 4254 results

Filters: Keyword is security  [Clear All Filters]
2023-04-14
Monani, Ravi, Rogers, Brian, Rezaei, Amin, Hedayatipour, Ava.  2022.  Implementation of Chaotic Encryption Architecture on FPGA for On-Chip Secure Communication. 2022 IEEE Green Energy and Smart System Systems (IGESSC). :1–6.
Chaos is an interesting phenomenon for nonlinear systems that emerges due to its complex and unpredictable behavior. With the escalated use of low-powered edge-compute devices, data security at the edge develops the need for security in communication. The characteristic that Chaos synchronizes over time for two different chaotic systems with their own unique initial conditions, is the base for chaos implementation in communication. This paper proposes an encryption architecture suitable for communication of on-chip sensors to provide a POC (proof of concept) with security encrypted on the same chip using different chaotic equations. In communication, encryption is achieved with the help of microcontrollers or software implementations that use more power and have complex hardware implementation. The small IoT devices are expected to be operated on low power and constrained with size. At the same time, these devices are highly vulnerable to security threats, which elevates the need to have low power/size hardware-based security. Since the discovery of chaotic equations, they have been used in various encryption applications. The goal of this research is to take the chaotic implementation to the CMOS level with the sensors on the same chip. The hardware co-simulation is demonstrated on an FPGA board for Chua encryption/decryption architecture. The hardware utilization for Lorenz, SprottD, and Chua on FPGA is achieved with Xilinx System Generation (XSG) toolbox which reveals that Lorenz’s utilization is 9% lesser than Chua’s.
ISSN: 2640-0138
Barakat, Ghena, Al-Duwairi, Basheer, Jarrah, Moath, Jaradat, Manar.  2022.  Modeling and Simulation of IoT Botnet Behaviors Using DEVS. 2022 13th International Conference on Information and Communication Systems (ICICS). :42–47.
The ubiquitous nature of the Internet of Things (IoT) devices and their wide-scale deployment have remarkably attracted hackers to exploit weakly-configured and vulnerable devices, allowing them to form large IoT botnets and launch unprecedented attacks. Modeling the behavior of IoT botnets leads to a better understanding of their spreading mechanisms and the state of the network at different levels of the attack. In this paper, we propose a generic model to capture the behavior of IoT botnets. The proposed model uses Markov Chains to study the botnet behavior. Discrete Event System Specifications environment is used to simulate the proposed model.
ISSN: 2573-3346
Gong, Dehao, Liu, Yunqing.  2022.  A Mechine Learning Approach for Botnet Detection Using LightGBM. 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA). :829–833.
The botnet-based network assault are one of the most serious security threats overlay the Internet this day. Although significant progress has been made in this region of research in recent years, it is still an ongoing and challenging topic to virtually direction the threat of botnets due to their continuous evolution, increasing complexity and stealth, and the difficulties in detection and defense caused by the limitations of network and system architectures. In this paper, we propose a novel and efficient botnet detection method, and the results of the detection method are validated with the CTU-13 dataset.
Borys, Adam, Kamruzzaman, Abu, Thakur, Hasnain Nizam, Brickley, Joseph C., Ali, Md L., Thakur, Kutub.  2022.  An Evaluation of IoT DDoS Cryptojacking Malware and Mirai Botnet. 2022 IEEE World AI IoT Congress (AIIoT). :725–729.
This paper dives into the growing world of IoT botnets that have taken the world by storm in the past five years. Though alone an IP camera cannot produce enough traffic to be considered a DDoS. But a botnet that has over 150,000 connected IP cameras can generate as much as 1 Tbps in traffic. Botnets catch many by surprise because their attacks and infections may not be as apparent as a DDoS, some other cases include using these cameras and printers for extracting information or quietly mine cryptocurrency at the IoT device owner's expense. Here we analyze damages on IoT hacking and define botnet architecture. An overview of Mirai botnet and cryptojacking provided to better understand the IoT botnets.
Shao, Rulin, Shi, Zhouxing, Yi, Jinfeng, Chen, Pin-Yu, Hsieh, Cho-Jui.  2022.  Robust Text CAPTCHAs Using Adversarial Examples. 2022 IEEE International Conference on Big Data (Big Data). :1495–1504.
CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is a widely used technology to distinguish real users and automated users such as bots. However, the advance of AI technologies weakens many CAPTCHA tests and can induce security concerns. In this paper, we propose a user-friendly text-based CAPTCHA generation method named Robust Text CAPTCHA (RTC). At the first stage, the foregrounds and backgrounds are constructed with font and background images respectively sampled from font and image libraries, and they are then synthesized into identifiable pseudo adversarial CAPTCHAs. At the second stage, we utilize a highly transferable adversarial attack designed for text CAPTCHAs to better obstruct CAPTCHA solvers. Our experiments cover comprehensive models including shallow models such as KNN, SVM and random forest, as well as various deep neural networks and OCR models. Experiments show that our CAPTCHAs have a failure rate lower than one millionth in general and high usability. They are also robust against various defensive techniques that attackers may employ, including adversarially trained CAPTCHA solvers and solvers trained with collected RTCs using manual annotation. Codes available at https://github.com/RulinShao/RTC.
Priya, A, Ganesh, Abishek, Akil Prasath, R, Jeya Pradeepa, K.  2022.  Cracking CAPTCHAs using Deep Learning. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :437–443.
In this decade, digital transactions have risen exponentially demanding more reliable and secure authentication systems. CAPTCHA (Completely Automated Public Turing Test to tell Computers and Humans Apart) system plays a major role in these systems. These CAPTCHAs are available in character sequence, picture-based, and audio-based formats. It is very essential that these CAPTCHAs should be able to differentiate a computer program from a human precisely. This work tests the strength of text-based CAPTCHAs by breaking them using an algorithm built on CNN (Convolution Neural Network) and RNN (Recurrent Neural Network). The algorithm is designed in such a way as an attempt to break the security features designers have included in the CAPTCHAs to make them hard to be cracked by machines. This algorithm is tested against the synthetic dataset generated in accordance with the schemes used in popular websites. The experiment results exhibit that the model has shown a considerable performance against both the synthetic and real-world CAPTCHAs.
Chen, Yang, Luo, Xiaonan, Xu, Songhua, Chen, Ruiai.  2022.  CaptchaGG: A linear graphical CAPTCHA recognition model based on CNN and RNN. 2022 9th International Conference on Digital Home (ICDH). :175–180.
This paper presents CaptchaGG, a model for recognizing linear graphical CAPTCHAs. As in the previous society, CAPTCHA is becoming more and more complex, but in some scenarios, complex CAPTCHA is not needed, and usually, linear graphical CAPTCHA can meet the corresponding functional scenarios, such as message boards of websites and registration of accounts with low security. The scheme is based on convolutional neural networks for feature extraction of CAPTCHAs, recurrent neural forests A neural network that is too complex will lead to problems such as difficulty in training and gradient disappearance, and too simple will lead to underfitting of the model. For the single problem of linear graphical CAPTCHA recognition, the model which has a simple architecture, extracting features by convolutional neural network, sequence modeling by recurrent neural network, and finally classification and recognition, can achieve an accuracy of 96% or more recognition at a lower complexity.
Hossen, Imran, Hei, Xiali.  2022.  aaeCAPTCHA: The Design and Implementation of Audio Adversarial CAPTCHA. 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P). :430–447.
CAPTCHAs are designed to prevent malicious bot programs from abusing websites. Most online service providers deploy audio CAPTCHAs as an alternative to text and image CAPTCHAs for visually impaired users. However, prior research investigating the security of audio CAPTCHAs found them highly vulnerable to automated attacks using Automatic Speech Recognition (ASR) systems. To improve the robustness of audio CAPTCHAs against automated abuses, we present the design and implementation of an audio adversarial CAPTCHA (aaeCAPTCHA) system in this paper. The aaeCAPTCHA system exploits audio adversarial examples as CAPTCHAs to prevent the ASR systems from automatically solving them. Furthermore, we conducted a rigorous security evaluation of our new audio CAPTCHA design against five state-of-the-art DNN-based ASR systems and three commercial Speech-to-Text (STT) services. Our experimental evaluations demonstrate that aaeCAPTCHA is highly secure against these speech recognition technologies, even when the attacker has complete knowledge of the current attacks against audio adversarial examples. We also conducted a usability evaluation of the proof-of-concept implementation of the aaeCAPTCHA scheme. Our results show that it achieves high robustness at a moderate usability cost compared to normal audio CAPTCHAs. Finally, our extensive analysis highlights that aaeCAPTCHA can significantly enhance the security and robustness of traditional audio CAPTCHA systems while maintaining similar usability.
Lee, Bowhyung, Han, Donghwa, Lee, Namyoon.  2022.  Demo: Real-Time Implementation of Block Orthogonal Sparse Superposition Codes. 2022 IEEE International Conference on Communications Workshops (ICC Workshops). :1–2.
Short-packet communication is a key enabler of various Internet of Things applications that require higher-level security. This proposal briefly reviews block orthogonal sparse superposition (BOSS) codes, which are applicable for secure short-packet transmissions. In addition, following the IEEE 802.11a Wi-Fi standards, we demonstrate the real-time performance of secure short packet transmission using a software-defined radio testbed to verify the feasibility of BOSS codes in a multi-path fading channel environment.
ISSN: 2694-2941
Boche, Holger, Cai, Minglai, Wiese, Moritz.  2022.  Mosaics of Combinatorial Designs for Semantic Security on Quantum Wiretap Channels. 2022 IEEE International Symposium on Information Theory (ISIT). :856–861.
We study semantic security for classical-quantum channels. Our security functions are functional forms of mosaics of combinatorial designs. We extend methods in [25] from classical channels to classical-quantum channels to demonstrate that mosaics of designs ensure semantic security for classical-quantum channels, and are also capacity achieving coding schemes. An advantage of these modular wiretap codes is that we provide explicit code constructions that can be implemented in practice for every channel, given an arbitrary public code.
ISSN: 2157-8117
Ma, Xiao, Wang, Yixin, Zhu, Tingting.  2022.  A New Framework for Proving Coding Theorems for Linear Codes. 2022 IEEE International Symposium on Information Theory (ISIT). :2768–2773.

A new framework is presented in this paper for proving coding theorems for linear codes, where the systematic bits and the corresponding parity-check bits play different roles. Precisely, the noisy systematic bits are used to limit the list size of typical codewords, while the noisy parity-check bits are used to select from the list the maximum likelihood codeword. This new framework for linear codes allows that the systematic bits and the parity-check bits are transmitted in different ways and over different channels. In particular, this new framework unifies the source coding theorems and the channel coding theorems. With this framework, we prove that the Bernoulli generator matrix codes (BGMCs) are capacity-achieving over binary-input output symmetric (BIOS) channels and also entropy-achieving for Bernoulli sources.

ISSN: 2157-8117

Zhao, Yizhi, Wu, Lingjuan, Xu, Shiwei.  2022.  Secure Polar Coding with Non-stationary Channel Polarization. 2022 7th International Conference on Computer and Communication Systems (ICCCS). :393–397.

In this work, we consider the application of the nonstationary channel polarization theory on the wiretap channel model with non-stationary blocks. Particularly, we present a time-bit coding scheme which is a secure polar codes that constructed on the virtual bit blocks by using the non-stationary channel polarization theory. We have proven that this time-bit coding scheme achieves reliability, strong security and the secrecy capacity. Also, compared with regular secure polar coding methods, our scheme has a lower coding complexity for non-stationary channel blocks.

Hwang, Seunggyu, Lee, Hyein, Kim, Sooyoung.  2022.  Evaluation of physical-layer security schemes for space-time block coding under imperfect channel estimation. 2022 27th Asia Pacific Conference on Communications (APCC). :580–585.

With the advent of massive machine type of communications, security protection becomes more important than ever. Efforts have been made to impose security protection capability to physical-layer signal design, so called physical-layer security (PLS). The purpose of this paper is to evaluate the performance of PLS schemes for a multi-input-multi-output (MIMO) systems with space-time block coding (STBC) under imperfect channel estimation. Three PLS schemes for STBC schemes are modeled and their bit error rate (BER) performances are evaluated under various channel estimation error environments, and their performance characteristics are analyzed.

ISSN: 2163-0771

2023-03-31
Barbàra, Fadi, Schifanella, Claudio.  2022.  BxTB: cross-chain exchanges of bitcoins for all Bitcoin wrapped tokens. 2022 Fourth International Conference on Blockchain Computing and Applications (BCCA). :143–150.
While it is possible to exchange tokens whose smart contracts are on the same blockchain, cross-exchanging bitcoins for a Bitcoin wrapped token is still cumbersome. In particular, current methods of exchange are still custodial and perform privacy-threatening controls on the users in order to operate. To solve this problem we present BxTB: cross-chain exchanges of bitcoins for any Bitcoin wrapped tokens. BxTB lets users achieve that by bypassing the mint-and-burn paradigm of current wrapped tokens and cross-exchanging already minted tokens in a P2P way. Instead of relaying on HTLCs and the overhead of communication and slowness due to time-locks, we leverage Stateless SPVs, i.e. proof-of-inclusion of transactions in the Bitcoin chain validated through a smart contract deployed on the other blockchain. Furthermore, since this primitive has not been introduced in the academic literature yet, we formally introduce it and we prove its security.
Chen, Xiaofeng, Wei, Zunbo, Jia, Xiangjuan, Zheng, Peiyu, Han, Mengwei, Yang, Xiaohu.  2022.  Current Status and Prospects of Blockchain Security Standardization. 2022 IEEE 9th International Conference on Cyber Security and Cloud Computing (CSCloud)/2022 IEEE 8th International Conference on Edge Computing and Scalable Cloud (EdgeCom). :24–29.
In recent years, blockchain technology has become one of the key technical innovation fields in the world. From the simple Bitcoin that can only be transferred at first to the blockchain application ecology that is now blooming, blockchain is gradually building a credible internet of value. However, with the continuous development and application of blockchain, even the blockchain based on cryptography is facing a series of network security problems and has caused great property losses to participants. Therefore, studying blockchain security and accelerating standardization of blockchain security have become the top priority to ensure the orderly and healthy development of blockchain technology. This paper briefly introduces the scope of blockchain security from the perspective of network security, sorts out some existing standards related to blockchain security, and gives some suggestions to promote the development and application of blockchain security standardization.
ISSN: 2693-8928
Fan, Wenjun, Wuthier, Simeon, Hong, Hsiang-Jen, Zhou, Xiaobo, Bai, Yan, Chang, Sang-Yoon.  2022.  The Security Investigation of Ban Score and Misbehavior Tracking in Bitcoin Network. 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS). :191–201.
Bitcoin P2P networking is especially vulnerable to networking threats because it is permissionless and does not have the security protections based on the trust in identities, which enables the attackers to manipulate the identities for Sybil and spoofing attacks. The Bitcoin node keeps track of its peer’s networking misbehaviors through ban scores. In this paper, we investigate the security problems of the ban-score mechanism and discover that the ban score is not only ineffective against the Bitcoin Message-based DoS (BM-DoS) attacks but also vulnerable to the Defamation attack as the network adversary can exploit the ban score to defame innocent peers. To defend against these threats, we design an anomaly detection approach that is effective, lightweight, and tailored to the networking threats exploiting Bitcoin’s ban-score mechanism. We prototype our threat discoveries against a real-world Bitcoin node connected to the Bitcoin Mainnet and conduct experiments based on the prototype implementation. The experimental results show that the attacks have devastating impacts on the targeted victim while being cost-effective on the attacker side. For example, an attacker can ban a peer in two milliseconds and reduce the victim’s mining rate by hundreds of thousands of hash computations per second. Furthermore, to counter the threats, we empirically validate our detection countermeasure’s effectiveness and performances against the BM-DoS and Defamation attacks.
ISSN: 2575-8411
Tarmissi, Khaled, Shalan, Atef, Al Shahrani, Abdullah, Alsulamy, Rayan, Alotaibi, Saud S., Al-Shareef, Sarah.  2022.  Mitigating Security Threats of Bitcoin Network by Reducing Message Broadcasts During Transaction Dissemination. 2022 14th International Conference on Computational Intelligence and Communication Networks (CICN). :772–777.
Propagation delay in blockchain networks is a major impairment of message transmission and validation in the bitcoin network. The transaction delay caused by message propagation across long network chains can cause significant threats to the bitcoin network integrity by allowing miners to find blocks during the message consensus process. Potential threats of slow transaction dissemination include double-spending, partitions, and eclipse attacks. In this paper, we propose a method for minimizing propagation delay by reducing non-compulsory message broadcasts during transaction dissemination in the underlying blockchain network. Our method will decrease the propagation delay in the bitcoin network and consequently mitigate the security threats based on message dissemination delay. Our results show improvement in the delay time with more effect on networks with a large number of nodes.
ISSN: 2472-7555
L, Shammi, Milind, Emilin Shyni, C., Ul Nisa, Khair, Bora, Ravi Kumar, Saravanan, S..  2022.  Securing Biometric Data with Optimized Share Creation and Visual Cryptography Technique. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :673–679.

Biometric security is the fastest growing area that receives considerable attention over the past few years. Digital hiding and encryption technologies provide an effective solution to secure biometric information from intentional or accidental attacks. Visual cryptography is the approach utilized for encrypting the information which is in the form of visual information for example images. Meanwhile, the biometric template stored in the databases are generally in the form of images, the visual cryptography could be employed effectively for encrypting the template from the attack. This study develops a share creation with improved encryption process for secure biometric verification (SCIEP-SBV) technique. The presented SCIEP-SBV technique majorly aims to attain security via encryption and share creation (SC) procedure. Firstly, the biometric images undergo SC process to produce several shares. For encryption process, homomorphic encryption (HE) technique is utilized in this work. To further improve the secrecy, an improved bald eagle search (IBES) approach was exploited in this work. The simulation values of the SCIEP-SBV system are tested on biometric images. The extensive comparison study demonstrated the improved outcomes of the SCIEP-SBV technique over compared methods.

Hu, Zhiyuan, Shi, Linghang, Chen, Huijun, Li, Chao, Lu, Jinghui.  2022.  Security Assessment of Android-Based Mobile Terminals. 2022 25th International Symposium on Wireless Personal Multimedia Communications (WPMC). :279–284.
Mobile terminals especially smartphones are changing people's work and life style. For example, mobile payments are experiencing rapid growth as consumers use mobile terminals as part of lifestyles. However, security is a big challenge for mobile application services. In order to reduce security risks, mobile terminal security assessment should be conducted before providing application services. An approach of comprehensive security assessment is proposed in this paper by defining security metrics with the corresponding scores and determining the relative weights of security metrics based on the analytical hierarchy process (AHP). Overall security assessment of Android-based mobile terminals is implemented for mobile payment services with payment fraud detection accuracy of 89%, which shows that the proposed approach of security assessment is reasonable.
ISSN: 1882-5621
Shi, Huan, Hui, Bo, Hu, Biao, Gu, RongJie.  2022.  Construction of Intelligent Emergency Response Technology System Based on Big Data Technology. 2022 International Conference on Big Data, Information and Computer Network (BDICN). :59–62.
This paper analyzes the problems existing in the existing emergency management technology system in China from various perspectives, and designs the construction of intelligent emergency system in combination with the development of new generation of Internet of Things, big data, cloud computing and artificial intelligence technology. The overall design is based on scientific and technological innovation to lead the reform of emergency management mechanism and process reengineering to build an intelligent emergency technology system characterized by "holographic monitoring, early warning, intelligent research and accurate disposal". To build an intelligent emergency management system that integrates intelligent monitoring and early warning, intelligent emergency disposal, efficient rehabilitation, improvement of emergency standards, safety and operation and maintenance construction.
Habbak, Hany, Metwally, Khaled, Mattar, Ahmed Maher.  2022.  Securing Big Data: A Survey on Security Solutions. 2022 13th International Conference on Electrical Engineering (ICEENG). :145–149.
Big Data (BD) is the combination of several technologies which address the gathering, analyzing and storing of massive heterogeneous data. The tremendous spurt of the Internet of Things (IoT) and different technologies are the fundamental incentive behind this enduring development. Moreover, the analysis of this data requires high-performance servers for advanced and parallel data analytics. Thus, data owners with their limited capabilities may outsource their data to a powerful but untrusted environment, i.e., the Cloud. Furthermore, data analytic techniques performed on external cloud may arise various security intimidations regarding the confidentiality and the integrity of the aforementioned; transferred, analyzed, and stored data. To countermeasure these security issues and challenges, several techniques have been addressed. This survey paper aims to summarize and emphasize the security threats within Big Data framework, in addition, it is worth mentioning research work related to Big Data Analytics (BDA).
Navuluri, Karthik, Mukkamala, Ravi, Ahmad, Aftab.  2016.  Privacy-Aware Big Data Warehouse Architecture. 2016 IEEE International Congress on Big Data (BigData Congress). :341–344.
Along with the ever increasing growth in data collection and its mining, there is an increasing fear of compromising individual and population privacy. Several techniques have been proposed in literature to preserve privacy of collected data while storing and processing. In this paper, we propose a privacy-aware architecture for storing and processing data in a Big Data warehouse. In particular, we propose a flexible, extendable, and adaptable architecture that enforces user specified privacy requirements in the form of Embedded Privacy Agreements. The paper discusses the details of the architecture with some implementation details.
Chibba, Michelle, Cavoukian, Ann.  2015.  Privacy, consumer trust and big data: Privacy by design and the 3 C'S. 2015 ITU Kaleidoscope: Trust in the Information Society (K-2015). :1–5.
The growth of ICTs and the resulting data explosion could pave the way for the surveillance of our lives and diminish our democratic freedoms, at an unimaginable scale. Consumer mistrust of an organization's ability to safeguard their data is at an all time high and this has negative implications for Big Data. The timing is right to be proactive about designing privacy into technologies, business processes and networked infrastructures. Inclusiveness of all objectives can be achieved through consultation, co-operation, and collaboration (3 C's). If privacy is the default, without diminishing functionality or other legitimate interests, then trust will be preserved and innovation will flourish.
Li, Yunchen, Luo, Da.  2022.  Adversarial Audio Detection Method Based on Transformer. 2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE). :77–82.
Speech recognition technology has been applied to all aspects of our daily life, but it faces many security issues. One of the major threats is the adversarial audio examples, which may tamper the recognition results of the acoustic speech recognition system (ASR). In this paper, we propose an adversarial detection framework to detect adversarial audio examples. The method is based on the transformer self-attention mechanism. Spectrogram features are extracted from the audio and divided into patches. Position information are embedded and then fed into transformer encoder. Experimental results show that the method achieves good performance with the detection accuracy of above 96.5% under the white-box attacks and blackbox attacks, and noisy circumstances. Even when detecting adversarial examples generated by the unknown attacks, it also achieves satisfactory results.
Shahid, Jahanzeb, Muhammad, Zia, Iqbal, Zafar, Khan, Muhammad Sohaib, Amer, Yousef, Si, Weisheng.  2022.  SAT: Integrated Multi-agent Blackbox Security Assessment Tool using Machine Learning. 2022 2nd International Conference on Artificial Intelligence (ICAI). :105–111.
The widespread adoption of eCommerce, iBanking, and eGovernment institutions has resulted in an exponential rise in the use of web applications. Due to a large number of users, web applications have become a prime target of cybercriminals who want to steal Personally Identifiable Information (PII) and disrupt business activities. Hence, there is a dire need to audit the websites and ensure information security. In this regard, several web vulnerability scanners are employed for vulnerability assessment of web applications but attacks are still increasing day by day. Therefore, a considerable amount of research has been carried out to measure the effectiveness and limitations of the publicly available web scanners. It is identified that most of the publicly available scanners possess weaknesses and do not generate desired results. In this paper, the evaluation of publicly available web vulnerability scanners is performed against the top ten OWASP11OWASP® The Open Web Application Security Project (OWASP) is an online community that produces comprehensive articles, documentation, methodologies, and tools in the arena of web and mobile security. vulnerabilities and their performance is measured on the precision of their results. Based on these results, we proposed an Integrated Multi-Agent Blackbox Security Assessment Tool (SAT) for the security assessment of web applications. Research has proved that the vulnerabilities assessment results of the SAT are more extensive and accurate.