Biblio
The paper presents a comprehensive model of cybersecurity threats for a system of autonomous and remotely controlled vehicles (AV) in the environment of a smart city. The main focus in the security context is given to the “integrity” property. That property is of higher importance for industrial control systems in comparison with other security properties (availability and confidentiality). The security graph, which is part of the model, is dynamic, and, in real cases, its analysis may require significant computing resources for AV systems with a large number of assets and connections. The simplified example of the security graph for the AV system is presented.
The purpose of this work is to analyze the security model of a robotized system, to analyze the approaches to assessing the security of this system, and to develop our own framework. The solution to this problem involves the use of developed frameworks. The analysis will be conducted on a robotic system of robots. The prefix structures assume that the robotic system is divided into levels, and after that it is necessary to directly protect each level. Each level has its own characteristics and drawbacks that must be considered when developing a security system for a robotic system.
The digital low dropout regulators are widely used because it can operate at low supply voltage. In the digital low drop-out regulators, the high sampling frequency circuit has a short setup time, but it will produce overshoot, and then the output can be stabilized; although the low sampling frequency circuit output can be directly stabilized, the setup time is too long. This paper proposes a two sampling frequency circuit model, which aims to include the high and low sampling frequencies in the same circuit. By controlling the sampling frequency of the circuit under different conditions, this allows the circuit to combine the advantages of the circuit operating at different sampling frequencies. This shortens the circuit setup time and the stabilization time at the same time.
Scheduling in the cloud is a complex task due to the number and variety of resources available and the volatility of usage-patterns of resources considering that the resource setting is on the service provider. This complexity is compounded further when Security issues and Quality of Service (QoS) are also factored in. The aim of this paper is to describe a model that based on Security (SSM) as a key element that cloud services rely on which affects the performance, cost and time concerns within the security constraints of the cloud service. Definition of the Scheduling Security Model (SSM), and evaluation through worked example that can meet the customer requirements of cost and the quality of service in the required time.
In the open network environment, the strange entities can establish the mutual trust through Automated Trust Negotiation (ATN) that is based on exchanging digital credentials. In traditional ATN, the attribute certificate required to either satisfied or not, and in the strategy, the importance of the certificate is same, it may cause some unnecessary negotiation failure. And in the actual situation, the properties is not just 0 or 1, it is likely to between 0 and 1, so the satisfaction degree is different, and the negotiation strategy need to be quantified. This paper analyzes the fuzzy negotiation process, in order to improve the trust establishment in high efficiency and accuracy further.
Smartphones nowadays are customized to help users with their daily tasks such as storing important data or making transactions through the internet. With the sensitivity of the data involved, authentication mechanism such as fixed-text password, PIN, or unlock patterns are used to safeguard these data against intruders. However, these mechanisms have the risk from security threats such as cracking or shoulder surfing. To enhance mobile and/or information security, this study aimed to develop a free-form handwriting gesture user authentication for smartphones. It also tried to discover the static and dynamic handwriting features that significantly influence the recognition of a legitimate user. The experiment was then conducted by asking thirty (30) individuals to draw or swipe using their fingertip their desired free-form security pattern ten (10) times. These patterns were then cleaned and processed, and extracted seven (7) static and eleven (11) dynamic handwriting features. By means of Neural Network classifier of the RapidMiner data mining tool, these features were used to develop, validate, and test a model for user authentication. The model showed a very promising recognition rate of 96.67%. The model is further tested through a prototype, and it still gave a very satisfactory result.
Among most of the cyber attacks that occured, the most drastic are advanced persistent threats. APTs are differ from other attacks as they have multiple phases, often silent for long period of time and launched by adamant, well-funded opponents. These targeted attacks mainly concentrated on government agencies and organizations in industries, as are those involved in international trade and having sensitive data. APTs escape from detection by antivirus solutions, intrusion detection and intrusion prevention systems and firewalls. In this paper we proposes a classification model having 99.8% accuracy, for the detection of APT.
Threats which come from database insiders or database outsiders have formed a big challenge to the protection of integrity and confidentiality in many database systems. To overcome this situation a new domain called a Database Forensic (DBF) has been introduced to specifically investigate these dynamic threats which have posed many problems in Database Management Systems (DBMS) of many organizations. DBF is a process to identify, collect, preserve, analyse, reconstruct and document all digital evidences caused by this challenge. However, until today, this domain is still lacks having a standard and generic knowledge base for its forensic investigation methods / tools due to many issues and challenges in its complex processes. Therefore, this paper will reveal an approach adapted from a software engineering domain called metamodelling which will unify these DBF complex knowledge processes into an artifact, a metamodel (DBF Metamodel). In future, the DBF Metamodel could benefit many DBF investigation users such as database investigators, stockholders, and other forensic teams in offering various possible solutions for their problem domain.