Biblio
Efficient application of Internet of Battlefield Things (IoBT) technology on the battlefield calls for innovative solutions to control and manage the deluge of heterogeneous IoBT devices. This paper presents an innovative paradigm to address heterogeneity in controlling IoBT and IoT devices, enabling multi-force cooperation in challenging battlefield scenarios.
Network virtualization is a fundamental technology for datacenters and upcoming wireless communications (e.g., 5G). It takes advantage of software-defined networking (SDN) that provides efficient network management by converting networking fabrics into SDN-capable devices. Moreover, white-box switches, which provide flexible and fast packet processing, are broadly deployed in commercial datacenters. A white-box switch requires a specific and restricted packet processing pipeline; however, to date, there has been no SDN-based network hypervisor that can support the pipeline of white-box switches. Therefore, in this paper, we propose WhiteVisor: a network hypervisor which can support the physical network composed of white-box switches. WhiteVisor converts a flow rule from the virtual network into a packet processing pipeline compatible with the white-box switch. We implement the prototype herein and show its feasibility and effectiveness with pipeline conversion and overhead.
With the unprecedented prevalence of mobile network applications, cryptographic protocols, such as the Secure Socket Layer/Transport Layer Security (SSL/TLS), are widely used in mobile network applications for communication security. The proven methods for encrypted video stream classification or encrypted protocol detection are unsuitable for the SSL/TLS traffic. Consequently, application-level traffic classification based networking and security services are facing severe challenges in effectiveness. Existing encrypted traffic classification methods exhibit unsatisfying accuracy for applications with similar state characteristics. In this paper, we propose a multiple-attribute-based encrypted traffic classification system named Multi-Attribute Associated Fingerprints (MAAF). We develop MAAF based on the two key insights that the DNS traces generated during the application runtime contain classification guidance information and that the handshake certificates in the encrypted flows can provide classification clues. Apart from the exploitation of key insights, MAAF employs the context of the encrypted traffic to overcome the attribute-lacking problem during the classification. Our experimental results demonstrate that MAAF achieves 98.69% accuracy on the real-world traceset that consists of 16 applications, supports the early prediction, and is robust to the scale of the training traceset. Besides, MAAF is superior to the state-of-the-art methods in terms of both accuracy and robustness.
While the introduction of the softwarelization technologies such as SDN and NFV transfers main focus of network management from hardware to software, the network operators still have to care for a lot of network and computing equipment located in the network center. Toward fully automated network management, we believe that robotic approach will be significant, meaning that robot will care for the physical equipment on behalf of human. This paper explains our experience and insight gained throughout development of a network management robot. We utilize ROS(Robot Operating System) which is a powerful platform for robot development and secures the ease of development and expandability. Our roadmap of the network management robot is also shown as well as three use cases such as environmental monitoring, operator assistance and autonomous maintenance of the equipment. Finally, the paper briefly explains experimental results conducted in a commercial network center.
As an extension of Network Function Virtualization, microservice architectures are a promising way to design future network services. At the same time, Information-Centric Networking architectures like NDN would benefit from this paradigm to offer more design choices for the network architect while facilitating the deployment and the operation of the network. We propose $μ$NDN, an orchestrated suite of microservices as an alternative way to implement NDN forwarding and support functions. We describe seven essential micro-services we developed, explain the design choices behind our solution and how it is orchestrated. We evaluate each service in isolation and the entire microservice architecture through two realistic scenarios to show its ability to react and mitigate some performance and security issues thanks to the orchestration. Our results show that $μ$NDN can replace a monolithic NDN forwarder while being more powerful and scalable.
SDN is a new network architecture for control and data forwarding logic separation, able to provide a high degree of openness and programmability, with many advantages not available by traditional networks. But there are still some problems unsolved, for example, it is easy to cause the controller to be attacked due to the lack of verifying the source of the packet, and the limited range of match fields cannot meet the requirement of the precise control of network services etc. Aiming at the above problems, this paper proposes a SDN network security control forwarding mechanism based on cipher identification, when packets flow into and out of the network, the forwarding device must verify their source to ensure the user's non-repudiation and the authenticity of packets. Besides administrators control the data forwarding based on cipher identification, able to form network management and control capabilities based on human, material, business flow, and provide a new method and means for the future of Internet security.
The SDN (Software Defined Networking) paradigm rings flexibility to the network management and is an enabler to offer huge opportunities for network programmability. And, to solve the scalability issue raised by the centralized architecture of SDN, multi-controllers deployment (or distributed controllers system) is envisioned. In this paper, we focus on increasing the diversity of SDN control plane so as to enhance the network security. Our goal is to limit the ability of a malicious controller to compromise its neighboring controllers, and by extension, the rest of the controllers. We investigate a heterogeneous Susceptible-Infectious-Susceptible (SIS) epidemic model to evaluate the security performance and propose a coloring algorithm to increase the diversity based on community detection. And the simulation results demonstrate that our algorithm can reduce infection rate in control plane and our work shows that diversity must be introduced in network design for network security.
Efficient management and control of modern and next-gen networks is of paramount importance as networks have to maintain highly reliable service quality whilst supporting rapid growth in traffic demand and new application services. Rapid mitigation of network service degradations is a key factor in delivering high service quality. Automation is vital to achieving rapid mitigation of issues, particularly at the network edge where the scale and diversity is the greatest. This automation involves the rapid detection, localization and (where possible) repair of service-impacting faults and performance impairments. However, the most significant challenge here is knowing what events to detect, how to correlate events to localize an issue and what mitigation actions should be performed in response to the identified issues. These are defined as policies to systems such as ECOMP. In this paper, we present AESOP, a data-driven intelligent system to facilitate automatic learning of policies and rules for triggering remedial actions in networks. AESOP combines best operational practices (domain knowledge) with a variety of measurement data to learn and validate operational policies to mitigate service issues in networks. AESOP's design addresses the following key challenges: (i) learning from high-dimensional noisy data, (ii) capturing multiple fault models, (iii) modeling the high service-cost of false positives, and (iv) accounting for the evolving network infrastructure. We present the design of our system and show results from our ongoing experiments to show the effectiveness of our policy leaning framework.
Software-Defined Networking (SDN) allows for fast reactions to security threats by dynamically enforcing simple forwarding rules as counter-measures. However, in classic SDN all the intelligence resides at the controller, with the switches only capable of performing stateless forwarding as ruled by the controller. It follows that the controller, in addition to network management and control duties, must collect and process any piece of information required to take advanced (stateful) forwarding decisions. This threatens both to overload the controller and to congest the control channel. On the other hand, stateful SDN represents a new concept, developed both to improve reactivity and to offload the controller and the control channel by delegating local treatments to the switches. In this paper, we adopt this stateful paradigm to protect end-hosts from Distributed Denial of Service (DDoS). We propose StateSec, a novel approach based on in-switch processing capabilities to detect and mitigate DDoS attacks. StateSec monitors packets matching configurable traffic features (e.g., IP src/dst, port src/dst) without resorting to the controller. By feeding an entropy-based algorithm with such monitoring features, StateSec detects and mitigates several threats such as (D)DoS and port scans with high accuracy. We implemented StateSec and compared it with a state-of-the-art approach to monitor traffic in SDN. We show that StateSec is more efficient: it achieves very accurate detection levels, limiting at the same time the control plane overhead.
Software defined networking promises network operators to dramatically simplify network management. It provides flexibility and innovation through network programmability. With SDN, network management moves from codifying functionality in terms of low-level device configuration to building software that facilitates network management and debugging[1]. SDN provides new techniques to solve long-standing problems in networking like routing by separating the complexity of state distribution from network specification. Despite all the hype surrounding SDNs, exploiting its full potential is demanding. Security is still the major issue and a striking challenge that reduces the growth of SDNs. Moreover the introduction of various architectural components and up cycling of novel entities of SDN poses new security issues and threats. SDN is considered as major target for digital threats and cyber-attacks[2] and have more devastating effects than simple networks. Initial SDN design doesn't considered security as its part; therefore, it must be raised on the agenda. This article discusses the security solutions proposed to secure SDNs. We categorize the security solutions in the article by presenting a thematic taxonomy based on SDN architectural layers/interfaces[3], security measures and goals, simulation framework. Moreover, the literature also points out the possible attacks[2] targeting different layers/interfaces of SDNs. For securing SDNs, the potential requirements and their key enablers are also identified and presented. Also, the articles sketch the design of secure and dependable SDNs. At last, we discuss open issues and challenges of SDN security that may be rated appropriate to be handled by professionals and researchers in the future.
Today's cellular core, which connects the radio access network to the Internet, relies on fixed hardware appliances placed at a few dedicated locations and uses relatively static routing policies. As such, today's core design has key limitations—it induces inefficient provisioning tradeoffs and is poorly equipped to handle overload, failure scenarios, and diverse application requirements. To address these limitations, ongoing efforts envision "clean slate" solutions that depart from cellular standards and routing protocols; e.g., via programmable switches at base stations and per-flow SDN-like orchestration. The driving question of this work is to ask if a clean-slate redesign is necessary and if not, how can we design a flexible cellular core that is minimally disruptive. We propose KLEIN, a design that stays within the confines of current cellular standards and addresses the above limitations by combining network functions virtualization with smart resource management. We address key challenges w.r.t. scalability and responsiveness in realizing KLEIN via backwards-compatible orchestration mechanisms. Our evaluations through data-driven simulations and real prototype experiments using OpenAirInterface show that KLEIN can scale to billions of devices and is close to optimal for wide variety of traffic and deployment parameters.
SDN’s logically centralized control provides an insertion point for programming the network. While it is generally agreed that higherlevel abstractions are needed to make that programming easy, there is little consensus on what are the “right” abstractions. Indeed, as SDN moves beyond its initial specialized deployments to broader use cases, it is likely that network control applications will require diverse abstractions that evolve over time. To this end, we champion a perspective that SDN control fundamentally revolves around data representation. We discard any application-specific structure that might be outgrown by new demands. Instead, we adopt a plain data representation of the entire network — network topology, forwarding, and control applications — and seek a universal data language that allows application programmers to transform the primitive representation into any high-level representations presented to applications or network operators. Driven by this insight, we present a system, Ravel, that implements an entire SDN network control infrastructure within a standard SQL database. In Ravel, network abstractions take the form of user-defined SQL views expressed by SQL queries that can be added on the fly. A key challenge in realizing this approach is to orchestrate multiple simultaneous abstractions that collectively affect the same underlying data. To achieve this, Ravel enhances the database with novel data integration mechanisms that merge the multiple views into a coherent forwarding behavior. Moreover, Ravel is exposed to applications through the one simple, familiar and highly interoperable SQL interface. While this is an ambitious long-term goal, our prototype built on the PostgreSQL database exhibits promising performance even for large scale networks.
In the paper a programmable management framework for SDN networks is presented. The concept is in-line with SDN philosophy - it can be programmed from scratch. The implemented management functions can be case dependent. The concept introduces a new node in the SDN architecture, namely the SDN manager. In compliance with the latest trends in network management the approach allows for embedded management of all network nodes and gradual implementation of management functions providing their code lifecycle management as well as the ability to on-the-fly code update. The described concept is a bottom-up approach, which key element is distributed execution environment (PDEE) that is based on well-established technologies like OSGI and FIPA. The described management idea has strong impact on the evolution of the SDN architecture, because the proposed distributed execution environment is a generic one, therefore it can be used not only for the management, but also for distributing of control or application functions.
Smart Grid is the trend of next generation power distribution and network management that enable a two -- way interactive communication and operation between consumers and suppliers, so as to achieve intelligent resource management and optimization. The wireless mesh network technology is a promising infrastructure solution to support these smart functionalities, while it has some inherent vulnerabilities and cyber-attack risks to be addressed. As Smart Grid is heavily relying on the underlie communication networks, which makes their security and dependability issues critical to the entire smart grid technology. Several studies have been conducted in the field of Smart Grid security, but few works were focused on the dependability and its associated resource analysis of the control center networks. In this paper, we have investigated the dependability modeling and also resource allocation in redundant communication networks by adopting two mathematical approaches, Reliability Block Diagrams (RBD) and Stochastic Petri Nets (SPNs), to analyze the dependability of control center networks in Smart Grid environment. We have applied our proposed modeling approach in an extensive case study to evaluate the availability of smart gird networks with different redundancy mechanisms. A combination of dependability models and reliability importance are used to analyze the network availability according to the most important components. We also show the variation of network availability in accordance with Mean Time to Failure (MTTF) in different network architectures.