Zhang, Tengyue, Chen, Liang, Han, Wen, Lin, Haojie, Xu, Aidong, Zhou, Zhiyu, Chen, Zhiwei, Jiang, Yixin, Zhang, Yunan.
2021.
Security Protection Technology of Electrical Power System Based on Edge Computing. 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA). :254—258.
In this paper, we mainly introduce the security protection technology of smart grid based on edge computing and propose an edge computing security protection architecture based on multi-service flexible mechanism. Aiming at the real time requirements of heterogeneous energy terminal access and power edge computing business in multiple interactive environment, a real-time and strong compatibility terminal security access mechanism integrating physical characteristics and lightweight cryptographic mechanism is proposed. According to different power terminal security data requirements, the edge computing data transmission, processing security and privacy protection technology are proposed. In addition, in the power system of distribution, microgrid and advanced metering system, the application of edge computing has been well reflected. Combined with encryption technology, access authentication, the security defense of edge data, edge equipment and edge application is carried out in many aspects, which strengthens the security and reliability of business penetration and information sharing at the edge of power grid, and realizes the end-to-end and end-to-system security prevention and control of power grid edge computing.
Xu, Ben, Liu, Jun.
2021.
False Data Detection Based On LSTM Network In Smart Grid. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :314—317.
In contrast to traditional grids, smart grids can help utilities save energy, thereby reducing operating costs. In the smart grid, the quality of monitoring and control can be fully improved by combining computing and intelligent communication knowledge. However, this will expose the system to FDI attacks, and the system is vulnerable to intrusion. Therefore, it is very important to detect such erroneous data injection attacks and provide an algorithm to protect the system from such attacks. In this paper, a FDI detection method based on LSTM has been proposed, which is validated by the simulation on the ieee-14 bus platform.
Zheng, Weijun, Chen, Ding, Duan, Jun, Xu, Hong, Qian, Wei, Gu, Leichun, Yao, Jiming.
2021.
5G Network Slice Configuration Based on Smart Grid. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 4:560—564.
The construction of a strong and smart grid is inseparable from the advancement of the power system, and the effective application of modern communication technologies allows the traditional grid to better transform into the energy Internet. With the advent of 5G, people pay close attention to the application of network slicing, not only as an emerging technology, but also as a new business model. In this article, we consider the delay requirements of certain services in the power grid. First, we analyze the security issues in network slicing and model the 5G core network slicing supply as a mixed integer linear programming problem. On this basis, a heuristic algorithm is proposed. According to the topological properties, resource utilization and delay of the slice nodes, the importance of them is sorted using the VIKOR method. In the slice link configuration stage, the shortest path algorithm is used to obtain the slice link physical path. Considering the delay of the slice link, a strategy for selecting the physical path is proposed. Simulations show that the scheme and algorithm proposed in this paper can achieve a high slice configuration success rate while ensuring the end-to-end delay requirements of the business, and meet the 5G core network slice security requirements.
Meng, Yu, Liangliang, Zhu, Yao, Rao, Yongxian, Yi, Jiaji, Liu.
2021.
Research on Fast Encryption Method for Smart Energy Management System in Smart Gird. 2021 International Conference on Communications, Information System and Computer Engineering (CISCE). :76—80.
Smart energy management system in smart grid carries a large number of sensitive data, which needs encryption algorithm to ensure the security of system communication. At present, most of the terminal devices of smart grid are embedded devices with limited computing resources, and their communication encryption mostly relies on AES encryption algorithm. It is difficult in key management and key distribution. Therefore, this paper proposes an improved ECC-AES hybrid encryption algorithm. Firstly, ECC algorithm is improved to improve the speed of encryption and decryption, and then the improved ECC algorithm is used as a supplement to AES algorithm. ECC is used to encrypt the AES key, which improves the security of the algorithm. At the same time, the experimental simulation also proves that the improved ECC algorithm has obvious performance improvement in computing time, CPU occupancy and memory usage.
Shen, Sujin, Sun, Chuang.
2021.
Research on Framework of Smart Grid Data Secure Storage from Blockchain Perspective. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :270—273.
With the development of technology, the structure of power grid becomes more and more complex, and the amount of data collected is also increasing. In the existing smart power grid, the data collected by sensors need to be uploaded and stored to the trusted central node, but the centralized storage method is easy to cause the malicious attack of the central node, resulting in single point failure, data tampering and other security problems. In order to solve these information security problems, this paper proposes a new data security storage framework based on private blockchain. By using the improved raft algorithm, partial decentralized data storage is used instead of traditional centralized storage. It also introduces in detail the working mechanism of the smart grid data security storage framework, including the process of uploading collected data, data verification, and data block consensus. The security analysis shows the effectiveness of the proposed data storage framework.
S, Muthulakshmi, R, Chitra.
2021.
Enhanced Data Privacy Algorithm to Protect the Data in Smart Grid. 2021 Smart Technologies, Communication and Robotics (STCR). :1—4.
Smart Grid is used to improve the accuracy of the grid network query. Though it gives the accuracy, it has the data privacy issues. It is a big challenge to solve the privacy issue in the smart grid. We need secured algorithms to protect the data in the smart grid, since the data is very important. This paper explains about the k-anonymous algorithm and analyzes the enhanced L-diversity algorithm for data privacy and security. The algorithm can protect the data in the smart grid is proven by the experiments.
Samy, Salma, Azab, Mohamed, Rizk, Mohamed.
2021.
Towards a Secured Blockchain-based Smart Grid. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :1066—1069.
The widespread utilization of smart grids is due to their flexibility to support the two-way flow of electricity and data. The critical nature of smart grids evokes traditional network attacks. Due to the advantages of blockchains in terms of ensuring trustworthiness and security, a significant body of literature has been recently developed to secure smart grid operations. We categorize the blockchain applications in smart grid into three categories: energy trading, infrastructure management, and smart-grid operations management. This paper provides an extensive survey of these works and the different ways to utilize blockchains in smart grid in general. We propose an abstract system to overcome a critical cyberattack; namely, the fake data injection, as previous works did not consider such an attack.
Feng, Weiqiang.
2021.
A Lightweight Anonymous Authentication Protocol For Smart Grid. 2021 13th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). :87—90.
Recently, A. A. Khan et al proposed a lightweight authentication and key agreement framework for the next generation of smart grids. The framework uses third party authentication server and ECC algorithm, which has certain advantages in anonymity, secure communication and computational performance. However, this paper finds that this method cannot meet the requirements of semantic security through analysis. Therefore, we propose an improved scheme on this basis. And through the method of formal proof, we verify that the scheme can meet the requirement of semantic security and anonymity of smart grid.
Jiang, Xin, Yang, Qifan, Ji, Wen, Chen, Yanshu, Cai, Yuxiang, Li, Xiaoming.
2021.
Smart grid data security storage strategy based on cloud computing platform. 2021 6th International Conference on Smart Grid and Electrical Automation (ICSGEA). :69—74.
Aiming at the security problems of traditional smart grid data security storage strategy, this paper proposes a smart grid data security storage strategy based on cloud computing platform. Based on the analysis of cloud computing and cloud storage, the security storage of smart grid data is modeled to improve the security storage performance of power system. The dynamic key mechanism is introduced to obtain the initial key information in the key chain and generate the dynamic secret key. The hyperchaotic system is used to obtain the modified bit plane code in the key chain to form the context and decision of data storage. MQ arithmetic encoder is used for entropy coding to generate the corresponding data storage compressed code stream, and the smart grid data storage key is improved. Combined with encryption processing and decryption processing, the secure storage of smart grid data is realized. The experimental results show that the smart grid data security storage strategy based on cloud computing platform increases the security of smart grid data storage.
Lee, Hakjun, Ryu, Jihyeon, Lee, Youngsook, Won, Dongho.
2021.
Security Analysis of Blockchain-based User Authentication for Smart Grid Edge Computing Infrastructure. 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM). :1—4.
With the development of IT technology and the generalization of the Internet of Things, smart grid systems combining IoT for efficient power grid construction are being widely deployed. As a form of development for this, edge computing and blockchain technology are being combined with the smart grid. Wang et al. proposed a user authentication scheme to strengthen security in this environment. In this paper, we describe the scheme proposed by Wang et al. and security faults. The first is that it is vulnerable to a side-channel attack, an impersonation attack, and a key material change attack. In addition, their scheme does not guarantee the anonymity of a participant in the smart grid system.