Visible to the public Biblio

Filters: Keyword is smart grid security  [Clear All Filters]
2023-01-20
Yu, Yue, Yao, Jiming, Wang, Wei, Qiu, Lanxin, Xu, Yangzhou.  2022.  A Lightweight Identity-Based Secondary Authentication Method in Smart Grid. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:2190—2195.
5G network slicing plays a key role in the smart grid business. The existing authentication schemes for 5G slicing in smart grids require high computing costs, so they are time-consuming and do not fully consider the security of authentication. Aiming at the application scenario of 5G smart grid, this paper proposes an identity-based lightweight secondary authentication scheme. Compared with other well-known methods, in the protocol interaction of this paper, both the user Ui and the grid server can authenticate each other's identities, thereby preventing illegal users from pretending to be identities. The grid user Ui and the grid server can complete the authentication process without resorting to complex bilinear mapping calculations, so the computational overhead is small. The grid user and grid server can complete the authentication process without transmitting the original identification. Therefore, this scheme has the feature of anonymous authentication. In this solution, the authentication process does not require infrastructure such as PKI, so the deployment is simple. Experimental results show that the protocol is feasible in practical applications
Liang, Xiao, An, Ningyu, Li, Da, Zhang, Qiang, Wang, Ruimiao.  2022.  A Blockchain and ABAC Based Data Access Control Scheme in Smart Grid. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :52—55.
In the smart grid, the sharing of power data among various energy entities can make the data play a higher value. However, there may be unauthorized access while sharing data, which makes many entities unwilling to share their data to prevent data leakage. Based on blockchain and ABAC (Attribute-based Access Control) technology, this paper proposes an access control scheme, so that users can achieve fine-grained access control of their data when sharing them. The solution uses smart contract to achieve automated and reliable policy evaluation. IPFS (Interplanetary File System) is used for off-chain distributed storage to share the storage pressure of blockchain and guarantee the reliable storage of data. At the same time, all processes in the system are stored in the blockchain, ensuring the accountability of the system. Finally, the experiment proves the feasibility of the proposed scheme.
Frantti, Tapio, Korkiakoski, Markku.  2022.  Security Controls for Smart Buildings with Shared Space. 2022 6th International Conference on Smart Grid and Smart Cities (ICSGSC). :156—165.
In this paper we consider cyber security requirements of the smart buildings. We identify cyber risks, threats, attack scenarios, security objectives and related security controls. The work was done as a part of a smart building design and construction work. From the controls identified w e concluded security practices for engineering-in smart buildings security. The paper provides an idea toward which system security engineers can strive in the basic design and implementation of the most critical components of the smart buildings. The intent of the concept is to help practitioners to avoid ad hoc approaches in the development of security mechanisms for smart buildings with shared space.
Rashed, Muhammad, Kamruzzaman, Joarder, Gondal, Iqbal, Islam, Syed.  2022.  Vulnerability Assessment framework for a Smart Grid. 2022 4th Global Power, Energy and Communication Conference (GPECOM). :449—454.
The increasing demand for the interconnected IoT based smart grid is facing threats from cyber-attacks due to inherent vulnerability in the smart grid network. There is a pressing need to evaluate and model these vulnerabilities in the network to avoid cascading failures in power systems. In this paper, we propose and evaluate a vulnerability assessment framework based on attack probability for the protection and security of a smart grid. Several factors were taken into consideration such as the probability of attack, propagation of attack from a parent node to child nodes, effectiveness of basic metering system, Kalman estimation and Advanced Metering Infrastructure (AMI). The IEEE-300 bus smart grid was simulated using MATPOWER to study the effectiveness of the proposed framework by injecting false data injection attacks (FDIA); and studying their propagation. Our results show that the use of severity assessment standards such as Common Vulnerability Scoring System (CVSS), AMI measurements and Kalman estimates were very effective for evaluating the vulnerability assessment of smart grid in the presence of FDIA attack scenarios.
Mohammed, Amira, George, Gibin.  2022.  Vulnerabilities and Strategies of Cybersecurity in Smart Grid - Evaluation and Review. 2022 3rd International Conference on Smart Grid and Renewable Energy (SGRE). :1—6.
Smart grid (SG) is considered the next generation of the traditional power grid. It is mainly divided into three main infrastructures: power system, information and communication infrastructures. Cybersecurity is imperative for information infrastructure and the secure, reliable, and efficient operation of the smart grid. Cybersecurity or a lack of proper implementation thereof poses a considerable challenge to the deployment of SG. Therefore, in this paper, A comprehensive survey of cyber security is presented in the smart grid context. Cybersecurity-related information infrastructure is clarified. The impact of adopting cybersecurity on control and management systems has been discussed. Also, the paper highlights the cybersecurity issues and challenges associated with the control decisions in the smart grid.
Feng, Guocong, Huang, Qingshui, Deng, Zijie, Zou, Hong, Zhang, Jiafa.  2022.  Research on cloud security construction of power grid in smart era. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :976—980.
With the gradual construction and implementation of cloud computing, the information security problem of the smart grid has surfaced. Therefore, in the construction of the smart grid cloud computing platform, information security needs to be considered in planning, infrastructure, and management at the same time, and it is imminent to build an information network that is secure from terminal to the platform to data. This paper introduces the concept of cloud security technology and the latest development of cloud security technology and discusses the main strategies of cloud security construction in electric power enterprises.
Fan, Jinqiang, Xu, Yonggang, Ma, Jing.  2022.  Research on Security Classification and Classification Method of Power Grid Data. 2022 6th International Conference on Smart Grid and Smart Cities (ICSGSC). :72—76.

In order to solve the problem of untargeted data security grading methods in the process of power grid data governance, this paper analyzes the mainstream data security grading standards at home and abroad, investigates and sorts out the characteristics of power grid data security grading requirements, and proposes a method that considers national, social, and A grid data security classification scheme for the security impact of four dimensions of individuals and enterprises. The plan determines the principle of power grid data security classification. Based on the basic idea of “who will be affected to what extent and to what extent when the power grid data security is damaged”, it defines three classification factors that need to be considered: the degree of impact, the scope of influence, and the objects of influence, and the power grid data is divided into five security levels. In the operation stage of power grid data security grading, this paper sorts out the experience and gives the recommended grading process. This scheme basically conforms to the status quo of power grid data classification, and lays the foundation for power grid data governance.

2022-11-18
Alfassa, Shaik Mirra, Nagasundari, S, Honnavalli, Prasad B.  2021.  Invasion Analysis of Smart Meter In AMI System. 2021 IEEE Mysore Sub Section International Conference (MysuruCon). :831—836.
Conventional systems has to be updated as the technology advances at quick pace. A smart grid is a renovated and digitalized version of a standard electrical infrastructure that allows two-way communication between customers and the utility, which overcomes huge manual hustle. Advanced Metering Infrastructure plays a major role in a smart grid by automatically reporting the power consumption readings to the utility through communication networks. However, there is always a trade-off. Security of AMI communication is a major problem that must be constantly monitored if this technology is to be fully utilized. This paper mainly focuses on developing a virtual setup of fully functional smart meter and a web application for generating electricity bill which allows consumer to obtain demand response, where the data is managed at server side. It also focuses on analyzing the potential security concerns posed by MITM-Arp-spoofing attacks on AMI systems and session hijacking attacks on web interfaces. This work also focusses on mitigating the vulnerabilities of session hijacking on web interface by restricting the cookies so that the attacker is unable to acquire any confidential data.
2022-03-22
Zhang, Tengyue, Chen, Liang, Han, Wen, Lin, Haojie, Xu, Aidong, Zhou, Zhiyu, Chen, Zhiwei, Jiang, Yixin, Zhang, Yunan.  2021.  Security Protection Technology of Electrical Power System Based on Edge Computing. 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA). :254—258.
In this paper, we mainly introduce the security protection technology of smart grid based on edge computing and propose an edge computing security protection architecture based on multi-service flexible mechanism. Aiming at the real time requirements of heterogeneous energy terminal access and power edge computing business in multiple interactive environment, a real-time and strong compatibility terminal security access mechanism integrating physical characteristics and lightweight cryptographic mechanism is proposed. According to different power terminal security data requirements, the edge computing data transmission, processing security and privacy protection technology are proposed. In addition, in the power system of distribution, microgrid and advanced metering system, the application of edge computing has been well reflected. Combined with encryption technology, access authentication, the security defense of edge data, edge equipment and edge application is carried out in many aspects, which strengthens the security and reliability of business penetration and information sharing at the edge of power grid, and realizes the end-to-end and end-to-system security prevention and control of power grid edge computing.
Xu, Ben, Liu, Jun.  2021.  False Data Detection Based On LSTM Network In Smart Grid. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :314—317.
In contrast to traditional grids, smart grids can help utilities save energy, thereby reducing operating costs. In the smart grid, the quality of monitoring and control can be fully improved by combining computing and intelligent communication knowledge. However, this will expose the system to FDI attacks, and the system is vulnerable to intrusion. Therefore, it is very important to detect such erroneous data injection attacks and provide an algorithm to protect the system from such attacks. In this paper, a FDI detection method based on LSTM has been proposed, which is validated by the simulation on the ieee-14 bus platform.
Badra, Mohamad, Borghol, Rouba.  2021.  Privacy-Preserving and Efficient Aggregation for Smart Grid based on Blockchain. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—3.
In this paper, we address the problem of privacy-preserving of the consumer's energy measurements in the context of the SG. To this end, we present a blockchain-based approach to preserve the privacy for smart grid users and to detect data forgery, replay attacks, and data injection attacks.
Zheng, Weijun, Chen, Ding, Duan, Jun, Xu, Hong, Qian, Wei, Gu, Leichun, Yao, Jiming.  2021.  5G Network Slice Configuration Based on Smart Grid. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 4:560—564.
The construction of a strong and smart grid is inseparable from the advancement of the power system, and the effective application of modern communication technologies allows the traditional grid to better transform into the energy Internet. With the advent of 5G, people pay close attention to the application of network slicing, not only as an emerging technology, but also as a new business model. In this article, we consider the delay requirements of certain services in the power grid. First, we analyze the security issues in network slicing and model the 5G core network slicing supply as a mixed integer linear programming problem. On this basis, a heuristic algorithm is proposed. According to the topological properties, resource utilization and delay of the slice nodes, the importance of them is sorted using the VIKOR method. In the slice link configuration stage, the shortest path algorithm is used to obtain the slice link physical path. Considering the delay of the slice link, a strategy for selecting the physical path is proposed. Simulations show that the scheme and algorithm proposed in this paper can achieve a high slice configuration success rate while ensuring the end-to-end delay requirements of the business, and meet the 5G core network slice security requirements.
Meng, Yu, Liangliang, Zhu, Yao, Rao, Yongxian, Yi, Jiaji, Liu.  2021.  Research on Fast Encryption Method for Smart Energy Management System in Smart Gird. 2021 International Conference on Communications, Information System and Computer Engineering (CISCE). :76—80.
Smart energy management system in smart grid carries a large number of sensitive data, which needs encryption algorithm to ensure the security of system communication. At present, most of the terminal devices of smart grid are embedded devices with limited computing resources, and their communication encryption mostly relies on AES encryption algorithm. It is difficult in key management and key distribution. Therefore, this paper proposes an improved ECC-AES hybrid encryption algorithm. Firstly, ECC algorithm is improved to improve the speed of encryption and decryption, and then the improved ECC algorithm is used as a supplement to AES algorithm. ECC is used to encrypt the AES key, which improves the security of the algorithm. At the same time, the experimental simulation also proves that the improved ECC algorithm has obvious performance improvement in computing time, CPU occupancy and memory usage.
Shen, Sujin, Sun, Chuang.  2021.  Research on Framework of Smart Grid Data Secure Storage from Blockchain Perspective. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :270—273.
With the development of technology, the structure of power grid becomes more and more complex, and the amount of data collected is also increasing. In the existing smart power grid, the data collected by sensors need to be uploaded and stored to the trusted central node, but the centralized storage method is easy to cause the malicious attack of the central node, resulting in single point failure, data tampering and other security problems. In order to solve these information security problems, this paper proposes a new data security storage framework based on private blockchain. By using the improved raft algorithm, partial decentralized data storage is used instead of traditional centralized storage. It also introduces in detail the working mechanism of the smart grid data security storage framework, including the process of uploading collected data, data verification, and data block consensus. The security analysis shows the effectiveness of the proposed data storage framework.
S, Muthulakshmi, R, Chitra.  2021.  Enhanced Data Privacy Algorithm to Protect the Data in Smart Grid. 2021 Smart Technologies, Communication and Robotics (STCR). :1—4.
Smart Grid is used to improve the accuracy of the grid network query. Though it gives the accuracy, it has the data privacy issues. It is a big challenge to solve the privacy issue in the smart grid. We need secured algorithms to protect the data in the smart grid, since the data is very important. This paper explains about the k-anonymous algorithm and analyzes the enhanced L-diversity algorithm for data privacy and security. The algorithm can protect the data in the smart grid is proven by the experiments.
Samy, Salma, Azab, Mohamed, Rizk, Mohamed.  2021.  Towards a Secured Blockchain-based Smart Grid. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :1066—1069.
The widespread utilization of smart grids is due to their flexibility to support the two-way flow of electricity and data. The critical nature of smart grids evokes traditional network attacks. Due to the advantages of blockchains in terms of ensuring trustworthiness and security, a significant body of literature has been recently developed to secure smart grid operations. We categorize the blockchain applications in smart grid into three categories: energy trading, infrastructure management, and smart-grid operations management. This paper provides an extensive survey of these works and the different ways to utilize blockchains in smart grid in general. We propose an abstract system to overcome a critical cyberattack; namely, the fake data injection, as previous works did not consider such an attack.
Feng, Weiqiang.  2021.  A Lightweight Anonymous Authentication Protocol For Smart Grid. 2021 13th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). :87—90.
Recently, A. A. Khan et al proposed a lightweight authentication and key agreement framework for the next generation of smart grids. The framework uses third party authentication server and ECC algorithm, which has certain advantages in anonymity, secure communication and computational performance. However, this paper finds that this method cannot meet the requirements of semantic security through analysis. Therefore, we propose an improved scheme on this basis. And through the method of formal proof, we verify that the scheme can meet the requirement of semantic security and anonymity of smart grid.
Jiang, Xin, Yang, Qifan, Ji, Wen, Chen, Yanshu, Cai, Yuxiang, Li, Xiaoming.  2021.  Smart grid data security storage strategy based on cloud computing platform. 2021 6th International Conference on Smart Grid and Electrical Automation (ICSGEA). :69—74.
Aiming at the security problems of traditional smart grid data security storage strategy, this paper proposes a smart grid data security storage strategy based on cloud computing platform. Based on the analysis of cloud computing and cloud storage, the security storage of smart grid data is modeled to improve the security storage performance of power system. The dynamic key mechanism is introduced to obtain the initial key information in the key chain and generate the dynamic secret key. The hyperchaotic system is used to obtain the modified bit plane code in the key chain to form the context and decision of data storage. MQ arithmetic encoder is used for entropy coding to generate the corresponding data storage compressed code stream, and the smart grid data storage key is improved. Combined with encryption processing and decryption processing, the secure storage of smart grid data is realized. The experimental results show that the smart grid data security storage strategy based on cloud computing platform increases the security of smart grid data storage.
Lee, Hakjun, Ryu, Jihyeon, Lee, Youngsook, Won, Dongho.  2021.  Security Analysis of Blockchain-based User Authentication for Smart Grid Edge Computing Infrastructure. 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM). :1—4.

With the development of IT technology and the generalization of the Internet of Things, smart grid systems combining IoT for efficient power grid construction are being widely deployed. As a form of development for this, edge computing and blockchain technology are being combined with the smart grid. Wang et al. proposed a user authentication scheme to strengthen security in this environment. In this paper, we describe the scheme proposed by Wang et al. and security faults. The first is that it is vulnerable to a side-channel attack, an impersonation attack, and a key material change attack. In addition, their scheme does not guarantee the anonymity of a participant in the smart grid system.

2021-11-30
Cultice, Tyler, Ionel, Dan, Thapliyal, Himanshu.  2020.  Smart Home Sensor Anomaly Detection Using Convolutional Autoencoder Neural Network. 2020 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). :67–70.
We propose an autoencoder based approach to anomaly detection in smart grid systems. Data collecting sensors within smart home systems are susceptible to many data corruption issues, such as malicious attacks or physical malfunctions. By applying machine learning to a smart home or grid, sensor anomalies can be detected automatically for secure data collection and sensor-based system functionality. In addition, we tested the effectiveness of this approach on real smart home sensor data collected for multiple years. An early detection of such data corruption issues is essential to the security and functionality of the various sensors and devices within a smart home.
Akhras, Raphaelle, El-Hajj, Wassim, Majdalani, Michel, Hajj, Hazem, Jabr, Rabih, Shaban, Khaled.  2020.  Securing Smart Grid Communication Using Ethereum Smart Contracts. 2020 International Wireless Communications and Mobile Computing (IWCMC). :1672–1678.
Smart grids are being continually adopted as a replacement of the traditional power grid systems to ensure safe, efficient, and cost-effective power distribution. The smart grid is a heterogeneous communication network made up of various devices such as smart meters, automation, and emerging technologies interacting with each other. As a result, the smart grid inherits most of the security vulnerabilities of cyber systems, putting the smart grid at risk of cyber-attacks. To secure the communication between smart grid entities, namely the smart meters and the utility, we propose in this paper a communication infrastructure built on top of a blockchain network, specifically Ethereum. All two-way communication between the smart meters and the utility is assumed to be transactions governed by smart contracts. Smart contracts are designed in such a way to ensure that each smart meter is authentic and each smart meter reading is reported securely and privately. We present a simulation of a sample smart grid and report all the costs incurred from building such a grid. The simulations illustrate the feasibility and security of the proposed architecture. They also point to weaknesses that must be addressed, such as scalability and cost.
Hu, Xiaoming, Tan, Wenan, Ma, Chuang.  2020.  Comment and Improvement on Two Aggregate Signature Schemes for Smart Grid and VANET in the Learning of Network Security. 2020 International Conference on Information Science and Education (ICISE-IE). :338–341.
Smart substation and Vehicular Ad-Hoc Network (VANET) are two important applications of aggregate signature scheme. Due to the large number of data collection equipment in substation, it needs security authentication and integrity protection to transmit data. Similarly, in VANET, due to limited resources, it has the needs of privacy protection and improving computing efficiency. Aggregate signature scheme can satisfy the above these needs and realize one-time verification of signature for multi-terminal data collection which can improve the performance. Aggregate signature scheme is an important technology to solve network security problem. Recently, many aggregate signature schemes are proposed which can be applied in smart grid or VANET. In this paper, we present two security analyses on two aggregate signature schemes proposed recently. By analysis, it shows that the two aggregate signature schemes do not satisfy the security property of unforgeability. A malicious user can forge a signature on any message. We also present some improved methods to solve these security problems with better performance. From security analysis to improvement of aggregate signature scheme, it is very suitable to be an instance to exhibit the students on designing of security aggregate signature scheme for network security education or course.
Dobrea, Marius-Alexandru, Vasluianu, Mihaela, Neculoiu, Giorgian, Bichiu, Stefan.  2020.  Data Security in Smart Grid. 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1–6.
Looking at the Smart Grid as a Cyber - Physical system of great complexity, the paper synthesizes the main IT security issues that may arise. Security issues are seen from a hybrid point of view, combining theory of information with system theory. Smart Grid has changed dramatically over the past years. With modern technologies, such as Big Data or Internet of Things (IoT), the Smart Grid is evolving into a more interconnected and dynamic power network model.
Pliatsios, Dimitrios, Sarigiannidis, Panagiotis, Efstathopoulos, Georgios, Sarigiannidis, Antonios, Tsiakalos, Apostolos.  2020.  Trust Management in Smart Grid: A Markov Trust Model. 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST). :1–4.
By leveraging the advancements in Information and Communication Technologies (ICT), Smart Grid (SG) aims to modernize the traditional electric power grid towards efficient distribution and reliable management of energy in the electrical domain. The SG Advanced Metering Infrastructure (AMI) contains numerous smart meters, which are deployed throughout the distribution grid. However, these smart meters are susceptible to cyberthreats that aim to disrupt the normal operation of the SG. Cyberattacks can have various consequences in the smart grid, such as incorrect customer billing or equipment destruction. Therefore, these devices should operate on a trusted basis in order to ensure the availability, confidentiality, and integrity of the metering data. In this paper, we propose a Markov chain trust model that determines the Trust Value (TV) for each AMI device based on its behavior. Finally, numerical computations were carried out in order to investigate the reaction of the proposed model to the behavior changes of a device.
Duan, Junhong, Zhao, Bo, Guo, Sensen.  2020.  The Design and Implementation of Smart Grid SOC Platform. 2020 IEEE International Conference on Information Technology,Big Data and Artificial Intelligence (ICIBA). 1:264–268.
Smart grid is the key infrastructure of the country, and its network security is an important link to ensure the national important infrastructure security. SOC as a secure operation mechanism for adaptive and continuous improvement of information security, it is practically significant to address the challenge to the network security of the smart grid. Based on the analysis of the technical characteristics and security of smart grid, and taking a grid enterprise smart grid as an example, we propose the design scheme and implementation plan of smart grid SOC platform. Experimental results show that the platform we designed can meet the performance requirements, it also meets the requirements of real-time storage of behavioral data and provides support for interactive analysis and batch analysis.