Visible to the public Biblio

Filters: Keyword is humanoid robot  [Clear All Filters]
2023-02-17
Biström, Dennis, Westerlund, Magnus, Duncan, Bob, Jaatun, Martin Gilje.  2022.  Privacy and security challenges for autonomous agents : A study of two social humanoid service robots. 2022 IEEE International Conference on Cloud Computing Technology and Science (CloudCom). :230–237.
The development of autonomous agents have gained renewed interest, largely due to the recent successes of machine learning. Social robots can be considered a special class of autonomous agents that are often intended to be integrated into sensitive environments. We present experiences from our work with two specific humanoid social service robots, and highlight how eschewing privacy and security by design principles leads to implementations with serious privacy and security flaws. The paper introduces the robots as platforms and their associated features, ecosystems and cloud platforms that are required for certain use cases or tasks. The paper encourages design aims for privacy and security, and then in this light studies the implementation from two different manufacturers. The results show a worrisome lack of design focus in handling privacy and security. The paper aims not to cover all the security flaws and possible mitigations, but does look closer into the use of the WebSocket protocol and it’s challenges when used for operational control. The conclusions of the paper provide insights on how manufacturers can rectify the discovered security flaws and presents key policies like accountability when it comes to implementing technical features of autonomous agents.
ISSN: 2330-2186
Abduljabbar, Mohammed, Alnajjar, Fady.  2022.  Web Platform for General Robot Controlling system. 2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA). :109–112.
AbuSaif is a human-like social robot designed and built at the UAE University's Artificial Intelligence and Robotics Lab. AbuSaif was initially operated by a classical personal computer (PC), like most of the existing social robots. Thus, most of the robot's functionalities are limited to the capacity of that mounted PC. To overcome this, in this study, we propose a web-based platform that shall take the benefits of clustering in cloud computing. Our proposed platform will increase the operational capability and functionality of AbuSaif, especially those needed to operate artificial intelligence algorithms. We believe that the robot will become more intelligent and autonomous using our proposed web platform.
2021-02-03
Mou, W., Ruocco, M., Zanatto, D., Cangelosi, A..  2020.  When Would You Trust a Robot? A Study on Trust and Theory of Mind in Human-Robot Interactions 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :956—962.

Trust is a critical issue in human-robot interactions (HRI) as it is the core of human desire to accept and use a non-human agent. Theory of Mind (ToM) has been defined as the ability to understand the beliefs and intentions of others that may differ from one's own. Evidences in psychology and HRI suggest that trust and ToM are interconnected and interdependent concepts, as the decision to trust another agent must depend on our own representation of this entity's actions, beliefs and intentions. However, very few works take ToM of the robot into consideration while studying trust in HRI. In this paper, we investigated whether the exposure to the ToM abilities of a robot could affect humans' trust towards the robot. To this end, participants played a Price Game with a humanoid robot (Pepper) that was presented having either low-level ToM or high-level ToM. Specifically, the participants were asked to accept the price evaluations on common objects presented by the robot. The willingness of the participants to change their own price judgement of the objects (i.e., accept the price the robot suggested) was used as the main measurement of the trust towards the robot. Our experimental results showed that robots possessing a high-level of ToM abilities were trusted more than the robots presented with low-level ToM skills.

Ye, S., Feigh, K., Howard, A..  2020.  Learning in Motion: Dynamic Interactions for Increased Trust in Human-Robot Interaction Games. 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :1186—1189.

Embodiment of actions and tasks has typically been analyzed from the robot's perspective where the robot's embodiment helps develop and maintain trust. However, we ask a similar question looking at the interaction from the human perspective. Embodied cognition has been shown in the cognitive science literature to produce increased social empathy and cooperation. To understand how human embodiment can help develop and increase trust in human-robot interactions, we created conducted a study where participants were tasked with memorizing greek letters associated with dance motions with the help of a humanoid robot. Participants either performed the dance motion or utilized a touch screen during the interaction. The results showed that participants' trust in the robot increased at a higher rate during human embodiment of motions as opposed to utilizing a touch screen device.

2020-12-01
Xu, J., Howard, A..  2018.  The Impact of First Impressions on Human- Robot Trust During Problem-Solving Scenarios. 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). :435—441.

With recent advances in robotics, it is expected that robots will become increasingly common in human environments, such as in the home and workplaces. Robots will assist and collaborate with humans on a variety of tasks. During these collaborations, it is inevitable that disagreements in decisions would occur between humans and robots. Among factors that lead to which decision a human should ultimately follow, theirs or the robot, trust is a critical factor to consider. This study aims to investigate individuals' behaviors and aspects of trust in a problem-solving situation in which a decision must be made in a bounded amount of time. A between-subject experiment was conducted with 100 participants. With the assistance of a humanoid robot, participants were requested to tackle a cognitive-based task within a given time frame. Each participant was randomly assigned to one of the following initial conditions: 1) a working robot in which the robot provided a correct answer or 2) a faulty robot in which the robot provided an incorrect answer. Impacts of the faulty robot behavior on participant's decision to follow the robot's suggested answer were analyzed. Survey responses about trust were collected after interacting with the robot. Results indicated that the first impression has a significant impact on participant's behavior of trusting a robot's advice during a disagreement. In addition, this study discovered evidence supporting that individuals still have trust in a malfunctioning robot even after they have observed a robot's faulty behavior.