Visible to the public Biblio

Filters: Keyword is Heart beat  [Clear All Filters]
2021-08-17
Zhang, Conghui, Li, Yi, Sun, Wenwen, Guan, Shaopeng.  2020.  Blockchain Based Big Data Security Protection Scheme. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). :574–578.
As the key platform to deal with big data, Hadoop cannot fully protect data security of users by relying on a single Kerberos authentication mechanism. In addition, the single Namenode has disadvantages such as single point failure, performance bottleneck and poor scalability. To solve these problems, a big data security protection scheme is proposed. In this scheme, blockchain technology is adopted to deploy distributed Namenode server cluster to take joint efforts to safeguard the metadata and to allocate access tasks of users. We also improved the heartbeat model to collect user behavior so as to make a faster response to Datanode failure. The smart contract conducts reasonable allocation of user role through the judgment of user tag and risk value. It also establishes a tracking chain of risk value to monitor user behavior in real time. Experiments show that this scheme can better protect data security in Hadoop. It has the advantage of metadata decentralization and the data is hard to be tampered.
2021-07-08
Cao, Yetong, Zhang, Qian, Li, Fan, Yang, Song, Wang, Yu.  2020.  PPGPass: Nonintrusive and Secure Mobile Two-Factor Authentication via Wearables. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1917—1926.
{Mobile devices are promising to apply two-factor authentication in order to improve system security and enhance user privacy-preserving. Existing solutions usually have certain limits of requiring some form of user effort, which might seriously affect user experience and delay authentication time. In this paper, we propose PPGPass, a novel mobile two-factor authentication system, which leverages Photoplethysmography (PPG) sensors in wrist-worn wearables to extract individual characteristics of PPG signals. In order to realize both nonintrusive and secure, we design a two-stage algorithm to separate clean heartbeat signals from PPG signals contaminated by motion artifacts, which allows verifying users without intentionally staying still during the process of authentication. In addition, to deal with non-cancelable issues when biometrics are compromised, we design a repeatable and non-invertible method to generate cancelable feature templates as alternative credentials, which enables to defense against man-in-the-middle attacks and replay attacks. To the best of our knowledge, PPGPass is the first nonintrusive and secure mobile two-factor authentication based on PPG sensors in wearables. We build a prototype of PPGPass and conduct the system with comprehensive experiments involving multiple participants. PPGPass can achieve an average F1 score of 95.3%, which confirms its high effectiveness, security, and usability}.
2020-07-13
Abuella, Hisham, Ekin, Sabit.  2019.  A New Paradigm for Non-contact Vitals Monitoring using Visible Light Sensing. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1–2.
Typical techniques for tracking vital signs require body contact and most of these techniques are intrusive in nature. Body-contact methods might irritate the patient's skin and he/she might feel uncomfortable while sensors are touching his/her body. In this study, we present a new wireless (non-contact) method for monitoring human vital signs (breathing and heartbeat). We have demonstrated for the first time1 that vitals signs can be measured wirelessly through visible light signal reflected from a human subject, also referred to as visible light sensing (VLS). In this method, the breathing and heartbeat rates are measured without any body-contact device, using only a simple photodetector and a light source (e.g., LED). The light signal reflected from human subject is modulated by the physical motions during breathing and heartbeats. Signal processing tools such as filtering and Fourier transform are used to convert these small variations in the received light signal power to vitals data.We implemented the VLS-based non-contact vital signs monitoring system by using an off-the-shelf light source, a photodetector and a signal acquisition and processing unit. We observed more than 94% of accuracy as compared to a contact-based FDA (The Food and Drug Administration) approved devices. Additional evaluations are planned to assess the performance of the developed vitals monitoring system, e.g., different subjects, environments, etc. Non-contact vitals monitoring system can be used in various areas and scenarios such as medical facilities, residential homes, security and human-computer-interaction (HCI) applications.
2020-02-17
Moquin, S. J., Kim, SangYun, Blair, Nicholas, Farnell, Chris, Di, Jia, Mantooth, H. Alan.  2019.  Enhanced Uptime and Firmware Cybersecurity for Grid-Connected Power Electronics. 2019 IEEE CyberPELS (CyberPELS). :1–6.
A distributed energy resource prototype is used to show cybersecurity best practices. These best practices include straightforward security techniques, such as encrypted serial communication. The best practices include more sophisticated security techniques, such as a method to evaluate and respond to firmware integrity at run-time. The prototype uses embedded Linux, a hardware-assisted monitor, one or more digital signal processors, and grid-connected power electronics. Security features to protect communication, firmware, power flow, and hardware are developed. The firmware run-time integrity security is presently evaluated, and shown to maintain power electronics uptime during firmware updating. The firmware run-time security feature can be extended to allow software rejuvenation, multi-mission controls, and greater flexibility and security in controls.
2018-04-02
Chen, Y., Chen, W..  2017.  Finger ECG-Based Authentication for Healthcare Data Security Using Artificial Neural Network. 2017 IEEE 19th International Conference on E-Health Networking, Applications and Services (Healthcom). :1–6.

Wearable and mobile medical devices provide efficient, comfortable, and economic health monitoring, having a wide range of applications from daily to clinical scenarios. Health data security becomes a critically important issue. Electrocardiogram (ECG) has proven to be a potential biometric in human recognition over the past decade. Unlike conventional authentication methods using passwords, fingerprints, face, etc., ECG signal can not be simply intercepted, duplicated, and enables continuous identification. However, in many of the studies, algorithms developed are not suitable for practical application, which usually require long ECG data for authentication. In this work, we introduce a two-phase authentication using artificial neural network (NN) models. This algorithm enables fast authentication within only 3 seconds, meanwhile achieves reasonable performance in recognition. We test the proposed method in a controlled laboratory experiment with 50 subjects. Finger ECG signals are collected using a mobile device at different times and physical statues. At the first stage, a ``General'' NN model is constructed based on data from the cohort and used for preliminary screening, while at the second stage ``Personal'' NN models constructed from single individual's data are applied as fine-grained identification. The algorithm is tested on the whole data set, and on different sizes of subsets (5, 10, 20, 30, and 40). Results proved that the proposed method is feasible and reliable for individual authentication, having obtained average False Acceptance Rate (FAR) and False Rejection Rate (FRR) below 10% for the whole data set.

2017-12-27
Hamad, N., Rahman, M., Islam, S..  2017.  Novel remote authentication protocol using heart-signals with chaos cryptography. 2017 International Conference on Informatics, Health Technology (ICIHT). :1–7.

Entity authentication is one of the fundamental information security properties for secure transactions and communications. The combination of biometrics with cryptography is an emerging topic for authentication protocol design. Among the existing biometrics (e.g., fingerprint, face, iris, voice, heart), the heart-signal contains liveness property of biometric samples. In this paper, a remote entity authentication protocol has been proposed based on the randomness of heart biometrics combined with chaos cryptography. To this end, initial keys are generated for chaotic logistic maps based on the heart-signal. The authentication parameters are generated from the initial keys that can be used for claimants and verifiers to authenticate and verify each other, respectively. In this proposed technique, as each session of communication is different from others, therefore many session-oriented attacks are prevented. Experiments have been conducted on sample heart-signal for remote authentication. The results show that the randomness property of the heart-signal can help to implement one of the famous secure encryption, namely one-time pad encryption.

2015-05-05
Syrivelis, D., Paschos, G.S., Tassiulas, L..  2014.  VirtueMAN: A software-defined network architecture for WiFi-based metropolitan applications. Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 2014 IEEE 19th International Workshop on. :95-99.

Metropolitan scale WiFi deployments face several challenges including controllability and management, which prohibit the provision of Seamless Access, Quality of Service (QoS) and Security to mobile users. Thus, they remain largely an untapped networking resource. In this work, a SDN-based network architecture is proposed; it is comprised of a distributed network-wide controller and a novel datapath for wireless access points. Virtualization of network functions is employed for configurable user access control as well as for supporting an IP-independent forwarding scheme. The proposed architecture is a flat network across the deployment area, providing seamless connectivity and reachability without the need of intermediary servers over the Internet, enabling thus a wide variety of localized applications, like for instance video surveillance. Also, the provided interface allows for transparent implementation of intra-network distributed cross-layer traffic control protocols that can optimize the multihop performance of the wireless network.
 

Yongle Hao, Yizhen Jia, Baojiang Cui, Wei Xin, Dehu Meng.  2014.  OpenSSL HeartBleed: Security Management of Implements of Basic Protocols. P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2014 Ninth International Conference on. :520-524.

With the rapid development of information technology, information security management is ever more important. OpenSSL security incident told us, there's distinct disadvantages of security management of current hierarchical structure, the software and hardware facilities are necessary to enforce security management on their implements of crucial basic protocols, in order to ease the security threats against the facilities in a certain extent. This article expounded cross-layer security management and enumerated 5 contributory factors for the core problems that management facing to.