Biblio
Filters: Keyword is human factors [Clear All Filters]
Mitigating Security Threats of Bitcoin Network by Reducing Message Broadcasts During Transaction Dissemination. 2022 14th International Conference on Computational Intelligence and Communication Networks (CICN). :772–777.
.
2022. Propagation delay in blockchain networks is a major impairment of message transmission and validation in the bitcoin network. The transaction delay caused by message propagation across long network chains can cause significant threats to the bitcoin network integrity by allowing miners to find blocks during the message consensus process. Potential threats of slow transaction dissemination include double-spending, partitions, and eclipse attacks. In this paper, we propose a method for minimizing propagation delay by reducing non-compulsory message broadcasts during transaction dissemination in the underlying blockchain network. Our method will decrease the propagation delay in the bitcoin network and consequently mitigate the security threats based on message dissemination delay. Our results show improvement in the delay time with more effect on networks with a large number of nodes.
ISSN: 2472-7555
The legal debate about personal data privacy at a time of big data mining and searching: Making big data researchers cooperating with lawmakers to find solutions for the future. 2016 First IEEE International Conference on Computer Communication and the Internet (ICCCI). :354–357.
.
2016. At the same time as Big Data technologies are being constantly refined, the legislation relating to data privacy is changing. The invalidation by the Court of Justice of the European Union on October 6, 2015, of the agreement known as “Safe Harbor”, negotiated by the European Commission on behalf of the European Union with the United States has two consequences. The first is to announce its replacement by a new, still fragile, program, the “Privacy Shield”, which isn't yet definitive and which could also later be repealed by the Court of Justice of the European Union. For example, we are expecting to hear the opinion in mid-April 2016 of the group of data protection authorities for the various states of the European Union, known as G29. The second is to mobilize the Big Data community to take control of the question of data privacy management and to put in place an adequate internal program.
Privacy-Aware Big Data Warehouse Architecture. 2016 IEEE International Congress on Big Data (BigData Congress). :341–344.
.
2016. Along with the ever increasing growth in data collection and its mining, there is an increasing fear of compromising individual and population privacy. Several techniques have been proposed in literature to preserve privacy of collected data while storing and processing. In this paper, we propose a privacy-aware architecture for storing and processing data in a Big Data warehouse. In particular, we propose a flexible, extendable, and adaptable architecture that enforces user specified privacy requirements in the form of Embedded Privacy Agreements. The paper discusses the details of the architecture with some implementation details.
Big Data Privacy Based on Differential Privacy a Hope for Big Data. 2014 International Conference on Computational Intelligence and Communication Networks. :776–781.
.
2014. In era of information age, due to different electronic, information & communication technology devices and process like sensors, cloud, individual archives, social networks, internet activities and enterprise data are growing exponentially. The most challenging issues are how to effectively manage these large and different type of data. Big data is one of the term named for this large and different type of data. Due to its extraordinary scale, privacy and security is one of the critical challenge of big data. At the every stage of managing the big data there are chances that privacy may be disclose. Many techniques have been suggested and implemented for privacy preservation of large data set like anonymization based, encryption based and others but unfortunately due to different characteristic (large volume, high speed, and unstructured data) of big data all these techniques are not fully suitable. In this paper we have deeply analyzed, discussed and suggested how an existing approach "differential privacy" is suitable for big data. Initially we have discussed about differential privacy and later analyze how it is suitable for big data.
Research on Enterprise Information Security and Privacy Protection in Big Data Environment. 2021 3rd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI). :324–327.
.
2021. With the development of information technology, extracting important data that people need from the vast information has become the key to a successful era. Therefore, big data technology is increasingly recognized by the public. While creating a lot of commercial value for enterprises, it also brings huge challenges to information security and privacy. In the big data environment, data has become an important medium for corporate decision-making, and information security and privacy protection have become the “army battleground” in corporate competition. Therefore, information security and privacy protection are getting more and more attention from enterprises, which also determines whether enterprises can occupy a place in the fiercely competitive market. This article analyzes the information security and privacy protection issues of enterprises in the big data environment from three aspects. Starting from the importance and significance of big data protection, it analyzes the security and privacy issues of big data in enterprise applications, and finally conducts information security and privacy protection for enterprises. Privacy protection puts forward relevant suggestions.
Privacy, consumer trust and big data: Privacy by design and the 3 C'S. 2015 ITU Kaleidoscope: Trust in the Information Society (K-2015). :1–5.
.
2015. The growth of ICTs and the resulting data explosion could pave the way for the surveillance of our lives and diminish our democratic freedoms, at an unimaginable scale. Consumer mistrust of an organization's ability to safeguard their data is at an all time high and this has negative implications for Big Data. The timing is right to be proactive about designing privacy into technologies, business processes and networked infrastructures. Inclusiveness of all objectives can be achieved through consultation, co-operation, and collaboration (3 C's). If privacy is the default, without diminishing functionality or other legitimate interests, then trust will be preserved and innovation will flourish.
Privacy-Preserving Big Data Stream Mining: Opportunities, Challenges, Directions. 2017 IEEE International Conference on Data Mining Workshops (ICDMW). :992–994.
.
2017. This paper explores recent achievements and novel challenges of the annoying privacy-preserving big data stream mining problem, which consists in applying mining algorithms to big data streams while ensuring the privacy of data. Recently, the emerging big data analytics context has conferred a new light to this exciting research area. This paper follows the so-depicted research trend.
ISSN: 2375-9259
Privacy-Preserving Big Data Exchange: Models, Issues, Future Research Directions. 2021 IEEE International Conference on Big Data (Big Data). :5081–5084.
.
2021. Big data exchange is an emerging problem in the context of big data management and analytics. In big data exchange, multiple entities exchange big datasets beyond the common data integration or data sharing paradigms, mostly in the context of data federation architectures. How to make big data exchange while ensuring privacy preservation constraintsƒ The latter is a critical research challenge that is gaining momentum on the research community, especially due to the wide family of application scenarios where it plays a critical role (e.g., social networks, bio-informatics tools, smart cities systems and applications, and so forth). Inspired by these considerations, in this paper we provide an overview of models and issues in the context of privacy-preserving big data exchange research, along with a selection of future research directions that will play a critical role in next-generation research.
Privacy Preserving Big Data Publishing. 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT). :24–29.
.
2018. In order to gain more benefits from big data, they must be shared, published, analyzed and processed without having any harm or facing any violation and finally get better values from these analytics. The literature reports that this analytics brings an issue of privacy violations. This issue is also protected by law and bring fines to the companies, institutions or individuals. As a result, data collectors avoid to publish or share their big data due to these concerns. In order to obtain plausible solutions, there are a number of techniques to reduce privacy risks and to enable publishing big data while preserving privacy at the same time. These are known as privacy-preserving big data publishing (PPBDP) models. This study presents the privacy problem in big data, evaluates big data components from privacy perspective, privacy risks and protection methods in big data publishing, and reviews existing privacy-preserving big data publishing approaches and anonymization methods in literature. The results were finally evaluated and discussed, and new suggestions were presented.
Adoption of a Secure ECC-based RFID Authentication Protocol. 2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT). :69–74.
.
2022. A single RFID (Radio Frequency Identification) is a technology for the remote identification of objects or people. It integrates a reader that receives the information contained in an RFID tag through an RFID authentication protocol. RFID provides several security services to protect the data transmitted between the tag and the reader. However, these advantages do not prevent an attacker to access this communication and remaining various security and privacy issues in these systems. Furthermore, with the rapid growth of IoT, there is an urgent need of security authentication and confidential data protection. Authentication protocols based on elliptic curve cryptographic (ECC) were widely investigated and implemented to guarantee protection against the various attacks that can suffer an RFID system. In this paper, we are going to focus on a comparative study between the most efficient ECC-based RFID authentication protocols that are already published, and study their security against the different wireless attacks.
Strategy to Increase RFID Security System Using Encryption Algorithm. 2022 8th International Conference on Wireless and Telematics (ICWT). :1–6.
.
2022. The Internet of Things (IoT) is rapidly evolving, allowing physical items to share information and coordinate with other nodes, increasing IoT’s value and being widely applied to various applications. Radio Frequency Identification (RFID) is usually used in IoT applications to automate item identification by establishing symmetrical communication between the tag device and the reader. Because RFID reading data is typically in plain text, a security mechanism is required to ensure that the reading results from this RFID data remain confidential. Researchers propose a lightweight encryption algorithm framework for IoT-based RFID applications to address this security issue. Furthermore, this research assesses the implementation of lightweight encryption algorithms, such as Grain v1 and Espresso, as two systems scenarios. The Grain v1 encryption is the final eSTREAM project that accepts an 80-bit key, 64-bit IV, and has a 160-bit internal state with limited application. In contrast, the Espresso algorithm has been implemented in various applications such as 5G wireless communication. Furthermore, this paper tested the performance of each encryption algorithm in the microcontroller and inspected the network performance in an IoT system.
Detection of Malware in UHF RFID User Memory Bank using Random Forest Classifier on Signal Strength Data in the Frequency Domain. 2022 IEEE International Conference on RFID (RFID). :47–52.
.
2022. A method of detecting UHF RFID tags with SQL in-jection virus code written in its user memory bank is explored. A spectrum analyzer took signal strength readings in the frequency spectrum while an RFID reader was reading the tag. The strength of the signal transmitted by the RFID tag in the UHF range, more specifically within the 902–908 MHz sub-band, was used as data to train a Random Forest model for Malware detection. Feature reduction is accomplished by dividing the observed spectrum into 15 ranges with a bandwidth of 344 kHz each and detecting the number of maxima in each range. The malware-infested tag could be detected more than 80% of the time. The frequency ranges contributing most in this detection method were the low (903.451-903.795 MHz, 902.418-902.762 MHz) and high (907.238-907.582 MHz) bands in the observed spectrum.
ISSN: 2573-7635
Security Door Lock Using Multi-Sensor System Based on RFID, Fingerprint, and Keypad. 2022 International Conference on Green Energy, Computing and Sustainable Technology (GECOST). :453–457.
.
2022. Thefts problem in household needs to be anticipated with home security system. One of simple methods is using automatic solenoid door lock system, so that it is difficult to be duplicated and will reduce the chance of theft action when the house is empty. Therefore, a home security system prototype that can be accessed by utilizing biometric fingerprint, Radio Frequency Identification (RFID), and keypad sensors was designed and tested. Arduino Uno works to turn on the door lock solenoid, so door access will be given when authentication is successful. Experimental results show that fingerprint sensor works well by being able to read fingerprints perfectly and the average time required to scan a fingerprint was 3.7 seconds. Meanwhile, Radio Frequency Identification (RFID) sensor detects Electronic-Kartu Tanda Penduduk (E-KTP) and the average time required for Radio Frequency Identification (RFID) to scan the card is about 2.4 seconds. Keypad functions to store password to unlock the door which produces the average time of 3.7 seconds after 10 trials. Average time to open with multi-sensor is 9.8 seconds. However, its drawback is no notification or SMS which directly be accessed by a cellphone or website with Wi-Fi or Telegram applications allow homeowners to monitor their doors from afar as to minimize the number of house thefts.
Application of Face Recognition Technology in Mobile Payment. 2022 IEEE 12th International Conference on RFID Technology and Applications (RFID-TA). :217–219.
.
2022. The current face recognition technology has rapidly come into the public life, from unlocking cell phone face to mobile payment, which has brought a lot of convenience to life. However, it is undeniable that it also brings security challenges. Based on this paper, we will discuss the risks of face recognition in the mobile payment and put forward relevant suggestions.
Comparative Analysis of Secured Transport Systems using RFID Technology for Schools. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1–6.
.
2022. Despite the strict measures taken by authorities for children safety, crime against children is increasing. To curb this crime, it is important to improve the safety of children. School authorities can be severely penalized for these incidents, hence monitoring the school bus is significantly important in limiting these incidents. The developing worry of families for the security and insurance of their kids has started incredible interest in creating strong frameworks that give successful following and oversight of kids driving among home and school. Coordinated transport following permits youngsters to partake more in their normal schoolwork longer than trusting that a transport will be late with the assistance of notice and guarantees the security of every understudy. These days, reacting to the necessities existing apart from everything else, numerous instructive foundations have begun to push more towards a compelling global positioning framework of their vehicles that ensures the wellbeing of their understudies. Effective transport following is accomplished by procuring the geographic directions utilizing the GPS module and communicating the informationto a distant server. The framework depends on prepared to-utilize inactive RFID peruses. Make a message pop-up from the server script subsequent to checking the understudy's RFID tag be. The RFID examine exhibiting that the understudy boarded the vehicle to the specific trained professionals and the parent. Successful transport following permits school specialists, guardians, and drivers to precisely design their schedules while protecting kids from the second they get on until they get off the transport. The framework overall makes it conceivable to educate the administration regarding crises or protests. A variety of reports can be generated for different school-wide real-time bus and vehicle activities. This paper reviews the various smart security transport systems proposed for providing security features.
True-Time-Delay Line of Chipless RFID Tag for Security & IoT Sensing Applications. 2022 5th International Conference on Information and Communications Technology (ICOIACT). :1–6.
.
2022. In this paper, a novel composite right/left-handed transmission line (CRLH TL) 3-unit cell is presented for finding excellent time-delay (TD) efficiency of Chipless RFID's True-Time-Delay Lines (TTDLs). RFID (Radio Frequency Identification) is a non-contact automatic identification technology that uses radio frequency (RF) signals to identify target items automatically and retrieve pertinent data without the need for human participation. However, as compared to barcodes, RFID tags are prohibitively expensive and complex to manufacture. Chipless RFID tags are RFID tags that do not contain silicon chips and are therefore less expensive and easier to manufacture. It combines radio broadcasting technology with radar technology. Radio broadcasting technology use radio waves to send and receive voice, pictures, numbers, and symbols, whereas radar technology employs the radio wave reflection theory. Chipless RFID lowers the cost of sensors such as gas, temperature, humidity, and pressure. In addition, Chipless RFID tags can be used as sensors which are also required for security purposes and future IoT applications.
ISSN: 2770-4661
2P-mtOTP: A Secure, Two-Party, Ownership Transfer Protocol for Multiple RFID Tags based on Quadratic Residues. 2022 IEEE International Conference on RFID (RFID). :29–34.
.
2022. Radio Frequency Identification (RFID) improves the efficiency of managing assets in supply chain applications throughout an entire life cycle or while in transport. Transfer of ownership of RFID-tagged items involves replacing information authorizing the old owner with information authorizing the new owner. In this work, we present a two-party, multiple tag, single-owner protocol for ownership transfer: 2P-mtOTP. This two-party protocol depends only on the communication among the two owners and the tags. Further, 2P-mtOTP is robust to attacks on its security, and it preserves the privacy of the owners and tags. We analyze our work in comparison to recent ownership transfer protocols in terms of security, privacy, and efficiency.
ISSN: 2573-7635
Towards a Hybrid UHF RFID and NFC Platform for the Security of Medical Data from a Point of Care. 2022 IEEE 12th International Conference on RFID Technology and Applications (RFID-TA). :142–145.
.
2022. In recent years, body-worn RFID and NFC (near field communication) devices have become one of the principal technologies concurring to the rise of healthcare internet of thing (H-IoT) systems. Similarly, points of care (PoCs) moved increasingly closer to patients to reduce the costs while supporting precision medicine and improving chronic illness management, thanks to timely and frequent feedback from the patients themselves. A typical PoC involves medical sensing devices capable of sampling human health, personal equipment with communications and computing capabilities (smartphone or tablet) and a secure software environment for data transmission to medical centers. Hybrid platforms simultaneously employing NFC and ultra-high frequency (UHF) RFID could be successfully developed for the first sensing layer. An application example of the proposed hybrid system for the monitoring of acute myocardial infarction (AMI) survivors details how the combined use of NFC and UHF-RFID in the same PoC can support the multifaceted need of AMI survivors while protecting the sensitive data on the patient’s health.
TEE-based decentralized recommender systems: The raw data sharing redemption. 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS). :447–458.
.
2022. Recommenders are central in many applications today. The most effective recommendation schemes, such as those based on collaborative filtering (CF), exploit similarities between user profiles to make recommendations, but potentially expose private data. Federated learning and decentralized learning systems address this by letting the data stay on user's machines to preserve privacy: each user performs the training on local data and only the model parameters are shared. However, sharing the model parameters across the network may still yield privacy breaches. In this paper, we present Rex, the first enclave-based decentralized CF recommender. Rex exploits Trusted execution environments (TEE), such as Intel software guard extensions (SGX), that provide shielded environments within the processor to improve convergence while preserving privacy. Firstly, Rex enables raw data sharing, which ultimately speeds up convergence and reduces the network load. Secondly, Rex fully preserves privacy. We analyze the impact of raw data sharing in both deep neural network (DNN) and matrix factorization (MF) recommenders and showcase the benefits of trusted environments in a full-fledged implementation of Rex. Our experimental results demonstrate that through raw data sharing, Rex significantly decreases the training time by 18.3 x and the network load by 2 orders of magnitude over standard decentralized approaches that share only parameters, while fully protecting privacy by leveraging trustworthy hardware enclaves with very little overhead.
ISSN: 1530-2075
Secure Recommender System based on Neural Collaborative Filtering and Federated Learning. 2022 International Conference on Advanced Computing and Analytics (ACOMPA). :1–11.
.
2022. A recommender system aims to suggest the most relevant items to users based on their personal data. However, data privacy is a growing concern for anyone. Secure recommender system is a research direction to preserve user privacy while maintaining as high performance as possible. The most recent strategy is to use Federated Learning, a machine learning technique for privacy-preserving distributed training. In Federated Learning, a subset of users will be selected for training model using data at local systems, the server will securely aggregate the computing result from local models to generate a global model, finally that model will give recommendations to users. In this paper, we present a novel algorithm to train Collaborative Filtering recommender system specialized for the ranking task in Federated Learning setting, where the goal is to protect user interaction information (i.e., implicit feedback). Specifically, with the help of the algorithm, the recommender system will be trained by Neural Collaborative Filtering, one of the state-of-the-art matrix factorization methods and Bayesian Personalized Ranking, the most common pairwise approach. In contrast to existing approaches which protect user privacy by requiring users to download/upload the information associated with all interactions that they can possibly interact with in order to perform training, the algorithm can protect user privacy at low communication cost, where users only need to obtain/transfer the information related to a small number of interactions per training iteration. Above all, through extensive experiments, the algorithm has demonstrated to utilize user data more efficient than the most recent research called FedeRank, while ensuring that user privacy is still preserved.
Toward a BCI-Based Personalized Recommender System Using Deep Learning. 2022 IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :180–185.
.
2022. A recommender system is a filtering application based on personalized information from acquired big data to predict a user's preference. Traditional recommender systems primarily rely on keywords or scene patterns. Users' subjective emotion data are rarely utilized for preference prediction. Novel Brain Computer Interfaces hold incredible promise and potential for intelligent applications that rely on collected user data like a recommender system. This paper describes a deep learning method that uses Brain Computer Interfaces (BCI) based neural measures to predict a user's preference on short music videos. Our models are employed on both population-wide and individualized preference predictions. The recognition method is based on dynamic histogram measurement and deep neural network for distinctive feature extraction and improved classification. Our models achieve 97.21%, 94.72%, 94.86%, and 96.34% classification accuracy on two-class, three-class, four-class, and nine-class individualized predictions. The findings provide evidence that a personalized recommender system on an implicit BCI has the potential to succeed.
Recommendation-based Security Model for Ubiquitous system using Deep learning Technique. 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS). :1–6.
.
2022. Ubiquitous environment embedded with artificial intelligent consist of heterogenous smart devices communicating each other in several context for the computation of requirements. In such environment the trust among the smart users have taken as the challenge to provide the secure environment during the communication in the ubiquitous region. To provide the secure trusted environment for the users of ubiquitous system proposed approach aims to extract behavior of smart invisible entities by retrieving their behavior of communication in the network and applying the recommendation-based filters using Deep learning (RBF-DL). The proposed model adopts deep learning-based classifier to classify the unfair recommendation with fair ones to have a trustworthy ubiquitous system. The capability of proposed model is analyzed and validated by considering different attacks and additional feature of instances in comparison with generic recommendation systems.
ISSN: 2768-5330
Eavesdropping Against Bidirectional Physical Layer Secret Key Generation in Fiber Communications. 2022 IEEE Photonics Conference (IPC). :1–2.
.
2022. Physical layer secret key exploits the random but reciprocal channel features between legitimate users to encrypt their data against fiber-tapping. We propose a novel tapping-based eavesdropper scheme, leveraging its tapped signals from legitimate users to reconstruct their common features and the secret key.
ISSN: 2575-274X
SemKey: Boosting Secret Key Generation for RIS-assisted Semantic Communication Systems. 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall). :1–5.
.
2022. Deep learning-based semantic communications (DLSC) significantly improve communication efficiency by only transmitting the meaning of the data rather than a raw message. Such a novel paradigm can brace the high-demand applications with massive data transmission and connectivities, such as automatic driving and internet-of-things. However, DLSC are also highly vulnerable to various attacks, such as eavesdropping, surveillance, and spoofing, due to the openness of wireless channels and the fragility of neural models. To tackle this problem, we present SemKey, a novel physical layer key generation (PKG) scheme that aims to secure the DLSC by exploring the underlying randomness of deep learning-based semantic communication systems. To boost the generation rate of the secret key, we introduce a reconfigurable intelligent surface (RIS) and tune its elements with the randomness of semantic drifts between a transmitter and a receiver. Precisely, we first extract the random features of the semantic communication system to form the randomly varying switch sequence of the RIS-assisted channel and then employ the parallel factor-based channel detection method to perform the channel detection under RIS assistance. Experimental results show that our proposed SemKey significantly improves the secret key generation rate, potentially paving the way for physical layer security for DLSC.
ISSN: 2577-2465
A Design of Key Generation Unit Based on SRAM PUF. 2022 2nd International Conference on Frontiers of Electronics, Information and Computation Technologies (ICFEICT). :136–140.
.
2022. In the era of big data, information security is faced with many threats, among which memory data security of intelligent devices is an important link. Attackers can read the memory of specific devices, and then steal secrets, alter data, affect the operation of intelligent devices, and bring security threats. Data security is usually protected by encryption algorithm for device ciphertext conversion, so the safe generation and use of key becomes particularly important. In this paper, based on the advantages of SRAM PUF, such as real-time generation, power failure and disappearance, safety and reliability, a key generation unit is designed and implemented. BCH code is used as the error correction algorithm to generate 128-bit stable key, which provides a guarantee for the safe storage of intelligent devices.