Visible to the public Biblio

Found 2387 results

Filters: Keyword is human factors  [Clear All Filters]
2023-07-18
Nguyen, Bien-Cuong, Pham, Cong-Kha.  2022.  A Combined Blinding-Shuffling Online Template Attacks Countermeasure Based on Randomized Domain Montgomery Multiplication. 2022 IEEE International Conference on Consumer Electronics (ICCE). :1—6.
Online template attacks (OTA), high-efficiency side-channel attacks, are initially presented to attack the elliptic curve scalar. The modular exponentiation is similarly vulnerable to OTA. The correlation between modular multiplication's intermediate products is a crucial leakage of the modular exponent. This paper proposed a practical OTA countermeasure based on randomized domain Montgomery multiplication, which combines blinding and shuffling methods to eliminate the correlation between modular multiplication's inner products without additional computation requirements. The proposed OTA countermeasure is implemented on the Sakura-G board with a suppose that the target board and template board are identical. The experiment results show that the proposed countermeasure is sufficient to protect the modular exponentiation from OTA.
Nguyen, Thanh Tuan, Nguyen, Thanh Phuong, Tran, Thanh-Hai.  2022.  Detecting Reflectional Symmetry of Binary Shapes Based on Generalized R-Transform. 2022 International Conference on Multimedia Analysis and Pattern Recognition (MAPR). :1—6.
Analyzing reflectionally symmetric features inside an image is one of the important processes for recognizing the peculiar appearance of natural and man-made objects, biological patterns, etc. In this work, we will point out an efficient detector of reflectionally symmetric shapes by addressing a class of projection-based signatures that are structured by a generalized \textbackslashmathcalR\_fm-transform model. To this end, we will firstly prove the \textbackslashmathcalR\_fmˆ-transform in accordance with reflectional symmetry detection. Then different corresponding \textbackslashmathcalR\_fm-signatures of binary shapes are evaluated in order to determine which the corresponding exponentiation of the \textbackslashmathcalR\_fm-transform is the best for the detection. Experimental results of detecting on single/compound contour-based shapes have validated that the exponentiation of 10 is the most discriminatory, with over 2.7% better performance on the multiple-axis shapes in comparison with the conventional one. Additionally, the proposed detector also outperforms most of other existing methods. This finding should be recommended for applications in practice.
Ikesaka, Kazuma, Nanjo, Yuki, Kodera, Yuta, Kusaka, Takuya, Nogami, Yasuyuki.  2022.  Improvement of Miller Loop for a Pairing on FK12 Curve and its Implementation. 2022 Tenth International Symposium on Computing and Networking (CANDAR). :104—109.
Pairing is carried out by two steps, Miller loop and final exponentiation. In this manuscript, the authors propose an efficient Miller loop for a pairing on the FK12 curve. A Hamming weight and bit-length of loop parameter have a great effect on the computational cost of Miller loop. Optimal-ate pairing is used as the most efficient pairing on the FK12 curve currently. The loop parameter of optimal-ate pairing is 6z+2 where z is the integer to make the FK12 curve parameter. Our method uses z which has a shorter bit-length than the previous optimal-ate pairing as the loop parameter. Usually, z has a low Hamming weight to make final exponentiation efficient. Therefore, the loop parameter in our method has a lower Hamming weight than the loop parameter of the previous one in many cases. The authors evaluate our method by the number of multiplications and execution time. As a result, the proposed algorithm leads to the 3.71% reduction in the number of multiplications and the 3.38% reduction in the execution time.
Bhosale, Nilesh, Meshram, Akshaykumar, Pohane, Rupesh, Adak, Malabika, Bawane, Dnyaneshwar, Reddy, K. T. V..  2022.  Design of IsoQER Cryptosystem using IPDLP. 2022 International Conference on Emerging Trends in Engineering and Medical Sciences (ICETEMS). :363—367.
The suggested IsoQuadratic Exponentiation Randomized isocryptosystem design is the unique approach for public key encipher algorithm using IsoPartial Discrete Logarithm Problem and preservation of the recommended IsoQuadratic Exponentiation Randomized isocryptosystem be established against hardness of IsoPartial Discrete Logarithm Problem. Therewith, we demonstrated the possibility of an additional secured algorithm. The offered unique IsoQuadratic Exponentiation Randomized isocryptosystem is suitable for low bandwidth transmission, low storage and low numeration in cyberspace.
Langhammer, Martin, Gribok, Sergey, Pasca, Bogdan.  2022.  Low-Latency Modular Exponentiation for FPGAs. 2022 IEEE 30th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). :1—9.
Modular exponentiation, especially for very large integers of hundreds or thousands of bits, is a commonly used function in popular cryptosystems such as RSA. The complexity of this algorithm is partly driven by the very large word sizes, which require many - often millions - of primitive operations in a CPU implementation, or a large amount of logic when accelerated by an ASIC. FPGAs, with their many embedded DSP resources have started to be used as well. In almost all cases, the calculations have required multiple - occasionally many - clock cycles to complete. Recently, blockchain algorithms have required very low-latency implementations of modular multiplications, motivating new implementations and approaches.In this paper we show nine different high performance modular exponentiation for 1024-bit operands, using a 1024-bit modular multiplication as it’s core. Rather than just showing a number of completed designs, our paper shows the evolution of architectures which lead to different resource mix options. This will allow the reader to apply the examples to different FPGA targets which may have differing ratios of logic, memory, and embedded DSP blocks. In one design, we show a 1024b modular multiplier requiring 83K ALMs and 2372 DSPs, with a delay of 21.21ns.
El Makkaoui, Khalid, Lamriji, Youssef, Ouahbi, Ibrahim, Nabil, Omayma, Bouzahra, Anas, Beni-Hssane, Abderrahim.  2022.  Fast Modular Exponentiation Methods for Public-Key Cryptography. 2022 5th International Conference on Advanced Communication Technologies and Networking (CommNet). :1—6.
Modular exponentiation (ME) is a complex operation for several public-key cryptosystems (PKCs). Moreover, ME is expensive for resource-constrained devices in terms of computation time and energy consumption, especially when the exponent is large. ME is defined as the task of raising an integer x to power k and reducing the result modulo some integer n. Several methods to calculate ME have been proposed. In this paper, we present the efficient ME methods. We then implement the methods using different security levels of RSA keys on a Raspberry Pi. Finally, we give the fast ME method.
Ikesaka, Kazuma, Nanjo, Yuki, Kodera, Yuta, Kusaka, Takuya, Nogami, Yasuyuki.  2022.  Improvement of Final Exponentiation for a Pairing on FK12 Curve and its Implementation. 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :205—208.
Pairings on elliptic curves are used for innovative protocols such as ID-based encryption and zk-SNARKs. To make the pairings secure, it is important to consider the STNFS which is the special number field sieve algorithm for discrete logarithms in the finite field. The Fotiadis-Konstantinou curve with embedding degree 12(FK12), is known as one of the STNFS secure curves. To an efficient pairing on the FK12 curve, there are several previous works that focus on final exponentiation. The one is based on lattice-based method to decompose the hard part of final exponentiation and addition chain. However, there is a possibility to construct a more efficient calculation algorithm by using the relations appeared in the decomposition calculation algorithm than that of the previous work. In this manuscript, the authors propose a relation of the decomposition and verify the effectiveness of the proposed method from the execution time.
2023-06-22
Vibhandik, Harshavardhan, Kale, Sudhanshu, Shende, Samiksha, Goudar, Mahesh.  2022.  Medical Assistance Robot with capabilities of Mask Detection with Automatic Sanitization and Social Distancing Detection/ Awareness. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :340–347.
Healthcare sectors such as hospitals, nursing homes, medical offices, and hospice homes encountered several obstacles due to the outbreak of Covid-19. Wearing a mask, social distancing and sanitization are some of the most effective methods that have been proven to be essential to minimize the virus spread. Lately, medical executives have been appointed to monitor the virus spread and encourage the individuals to follow cautious instructions that have been provided to them. To solve the aforementioned challenges, this research study proposes an autonomous medical assistance robot. The proposed autonomous robot is completely service-based, which helps to monitor whether or not people are wearing a mask while entering any health care facility and sanitizes the people after sending a warning to wear a mask by using the image processing and computer vision technique. The robot not only monitors but also promotes social distancing by giving precautionary warnings to the people in healthcare facilities. The robot can assist the health care officials carrying the necessities of the patent while following them for maintaining a touchless environment. With thorough simulative testing and experiments, results have been finally validated.
2023-06-09
Plambeck, Swantje, Fey, Görschwin, Schyga, Jakob, Hinckeldeyn, Johannes, Kreutzfeldt, Jochen.  2022.  Explaining Cyber-Physical Systems Using Decision Trees. 2022 2nd International Workshop on Computation-Aware Algorithmic Design for Cyber-Physical Systems (CAADCPS). :3—8.
Cyber-Physical Systems (CPS) are systems that contain digital embedded devices while depending on environmental influences or external configurations. Identifying relevant influences of a CPS as well as modeling dependencies on external influences is difficult. We propose to learn these dependencies with decision trees in combination with clustering. The approach allows to automatically identify relevant influences and receive a data-related explanation of system behavior involving the system's use-case. Our paper presents a case study of our method for a Real-Time Localization System (RTLS) proving the usefulness of our approach, and discusses further applications of a learned decision tree.
Qiang, Weizhong, Luo, Hao.  2022.  AutoSlicer: Automatic Program Partitioning for Securing Sensitive Data Based-on Data Dependency Analysis and Code Refactoring. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :239—247.
Legacy programs are normally monolithic (that is, all code runs in a single process and is not partitioned), and a bug in a program may result in the entire program being vulnerable and therefore untrusted. Program partitioning can be used to separate a program into multiple partitions, so as to isolate sensitive data or privileged operations. Manual program partitioning requires programmers to rewrite the entire source code, which is cumbersome, error-prone, and not generic. Automatic program partitioning tools can separate programs according to the dependency graph constructed based on data or programs. However, programmers still need to manually implement remote service interfaces for inter-partition communication. Therefore, in this paper, we propose AutoSlicer, whose purpose is to partition a program more automatically, so that the programmer is only required to annotate sensitive data. AutoSlicer constructs accurate data dependency graphs (DDGs) by enabling execution flow graphs, and the DDG-based partitioning algorithm can compute partition information based on sensitive annotations. In addition, the code refactoring toolchain can automatically transform the source code into sensitive and insensitive partitions that can be deployed on the remote procedure call framework. The experimental evaluation shows that AutoSlicer can effectively improve the accuracy (13%-27%) of program partitioning by enabling EFG, and separate real-world programs with a relatively smaller performance overhead (0.26%-9.42%).
Liu, Chengwei, Chen, Sen, Fan, Lingling, Chen, Bihuan, Liu, Yang, Peng, Xin.  2022.  Demystifying the Vulnerability Propagation and Its Evolution via Dependency Trees in the NPM Ecosystem. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :672—684.
Third-party libraries with rich functionalities facilitate the fast development of JavaScript software, leading to the explosive growth of the NPM ecosystem. However, it also brings new security threats that vulnerabilities could be introduced through dependencies from third-party libraries. In particular, the threats could be excessively amplified by transitive dependencies. Existing research only considers direct dependencies or reasoning transitive dependencies based on reachability analysis, which neglects the NPM-specific dependency resolution rules as adapted during real installation, resulting in wrongly resolved dependencies. Consequently, further fine-grained analysis, such as precise vulnerability propagation and their evolution over time in dependencies, cannot be carried out precisely at a large scale, as well as deriving ecosystem-wide solutions for vulnerabilities in dependencies. To fill this gap, we propose a knowledge graph-based dependency resolution, which resolves the inner dependency relations of dependencies as trees (i.e., dependency trees), and investigates the security threats from vulnerabilities in dependency trees at a large scale. Specifically, we first construct a complete dependency-vulnerability knowledge graph (DVGraph) that captures the whole NPM ecosystem (over 10 million library versions and 60 million well-resolved dependency relations). Based on it, we propose a novel algorithm (DTResolver) to statically and precisely resolve dependency trees, as well as transitive vulnerability propagation paths, for each package by taking the official dependency resolution rules into account. Based on that, we carry out an ecosystem-wide empirical study on vulnerability propagation and its evolution in dependency trees. Our study unveils lots of useful findings, and we further discuss the lessons learned and solutions for different stakeholders to mitigate the vulnerability impact in NPM based on our findings. For example, we implement a dependency tree based vulnerability remediation method (DTReme) for NPM packages, and receive much better performance than the official tool (npm audit fix).
Williams, Daniel, Clark, Chelece, McGahan, Rachel, Potteiger, Bradley, Cohen, Daniel, Musau, Patrick.  2022.  Discovery of AI/ML Supply Chain Vulnerabilities within Automotive Cyber-Physical Systems. 2022 IEEE International Conference on Assured Autonomy (ICAA). :93—96.
Steady advancement in Artificial Intelligence (AI) development over recent years has caused AI systems to become more readily adopted across industry and military use-cases globally. As powerful as these algorithms are, there are still gaping questions regarding their security and reliability. Beyond adversarial machine learning, software supply chain vulnerabilities and model backdoor injection exploits are emerging as potential threats to the physical safety of AI reliant CPS such as autonomous vehicles. In this work in progress paper, we introduce the concept of AI supply chain vulnerabilities with a provided proof of concept autonomous exploitation framework. We investigate the viability of algorithm backdoors and software third party library dependencies for applicability into modern AI attack kill chains. We leverage an autonomous vehicle case study for demonstrating the applicability of our offensive methodologies within a realistic AI CPS operating environment.
Thiruloga, Sooryaa Vignesh, Kukkala, Vipin Kumar, Pasricha, Sudeep.  2022.  TENET: Temporal CNN with Attention for Anomaly Detection in Automotive Cyber-Physical Systems. 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC). :326—331.
Modern vehicles have multiple electronic control units (ECUs) that are connected together as part of a complex distributed cyber-physical system (CPS). The ever-increasing communication between ECUs and external electronic systems has made these vehicles particularly susceptible to a variety of cyber-attacks. In this work, we present a novel anomaly detection framework called TENET to detect anomalies induced by cyber-attacks on vehicles. TENET uses temporal convolutional neural networks with an integrated attention mechanism to learn the dependency between messages traversing the in-vehicle network. Post deployment in a vehicle, TENET employs a robust quantitative metric and classifier, together with the learned dependencies, to detect anomalous patterns. TENET is able to achieve an improvement of 32.70% in False Negative Rate, 19.14% in the Mathews Correlation Coefficient, and 17.25% in the ROC-AUC metric, with 94.62% fewer model parameters, and 48.14% lower inference time compared to the best performing prior works on automotive anomaly detection.
Zhao, Junjie, Xu, Bingfeng, Chen, Xinkai, Wang, Bo, He, Gaofeng.  2022.  Analysis Method of Security Critical Components of Industrial Cyber Physical System based on SysML. 2022 Tenth International Conference on Advanced Cloud and Big Data (CBD). :270—275.
To solve the problem of an excessive number of component vulnerabilities and limited defense resources in industrial cyber physical systems, a method for analyzing security critical components of system is proposed. Firstly, the components and vulnerability information in the system are modeled based on SysML block definition diagram. Secondly, as SysML block definition diagram is challenging to support direct analysis, a block security dependency graph model is proposed. On this basis, the transformation rules from SysML block definition graph to block security dependency graph are established according to the structure of block definition graph and its vulnerability information. Then, the calculation method of component security importance is proposed, and a security critical component analysis tool is designed and implemented. Finally, an example of a Drone system is given to illustrate the effectiveness of the proposed method. The application of this method can provide theoretical and technical support for selecting key defense components in the industrial cyber physical system.
Al-Amin, Mostafa, Khatun, Mirza Akhi, Nasir Uddin, Mohammed.  2022.  Development of Cyber Attack Model for Private Network. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :216—221.
Cyber Attack is the most challenging issue all over the world. Nowadays, Cyber-attacks are increasing on digital systems and organizations. Innovation and utilization of new digital technology, infrastructure, connectivity, and dependency on digital strategies are transforming day by day. The cyber threat scope has extended significantly. Currently, attackers are becoming more sophisticated, well-organized, and professional in generating malware programs in Python, C Programming, C++ Programming, Java, SQL, PHP, JavaScript, Ruby etc. Accurate attack modeling techniques provide cyber-attack planning, which can be applied quickly during a different ongoing cyber-attack. This paper aims to create a new cyber-attack model that will extend the existing model, which provides a better understanding of the network’s vulnerabilities.Moreover, It helps protect the company or private network infrastructure from future cyber-attacks. The final goal is to handle cyber-attacks efficacious manner using attack modeling techniques. Nowadays, many organizations, companies, authorities, industries, and individuals have faced cybercrime. To execute attacks using our model where honeypot, the firewall, DMZ and any other security are available in any environment.
Sun, Zeyu, Zhang, Chi.  2022.  Research on Relation Extraction of Fusion Entity Enhancement and Shortest Dependency Path based on BERT. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:766—770.
Deep learning models rely on single word features and location features of text to achieve good results in text relation extraction tasks. However, previous studies have failed to make full use of semantic information contained in sentence dependency syntax trees, and data sparseness and noise propagation still affect classification models. The BERT(Bidirectional Encoder Representations from Transformers) pretrained language model provides a better representation of natural language processing tasks. And entity enhancement methods have been proved to be effective in relation extraction tasks. Therefore, this paper proposes a combination of the shortest dependency path and entity-enhanced BERT pre-training language model for model construction to reduce the impact of noise terms on the classification model and obtain more semantically expressive feature representation. The algorithm is tested on SemEval-2010 Task 8 English relation extraction dataset, and the F1 value of the final experiment can reach 0. 881.
Choucri, Nazli, Agarwal, Gaurav.  2022.  Analytics for Cybersecurity Policy of Cyber-Physical Systems. 2022 IEEE International Symposium on Technologies for Homeland Security (HST). :1—7.
Guidelines, directives, and policy statements are usually presented in “linear” text form - word after word, page after page. However necessary, this practice impedes full understanding, obscures feedback dynamics, hides mutual dependencies and cascading effects and the like-even when augmented with tables and diagrams. The net result is often a checklist response as an end in itself. All this creates barriers to intended realization of guidelines and undermines potential effectiveness. We present a solution strategy using text as “data”, transforming text into a structured model, and generate network views of the text(s), that we then can use for vulnerability mapping, risk assessments and note control point analysis. For proof of concept we draw on NIST conceptual model and analysis of guidelines for smart grid cybersecurity, more than 600 pages of text.
Liu, Luchen, Lin, Xixun, Zhang, Peng, Zhang, Lei, Wang, Bin.  2022.  Learning Common Dependency Structure for Unsupervised Cross-Domain Ner. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8347—8351.
Unsupervised cross-domain NER task aims to solve the issues when data in a new domain are fully-unlabeled. It leverages labeled data from source domain to predict entities in unlabeled target domain. Since training models on large domain corpus is time-consuming, in this paper, we consider an alternative way by introducing syntactic dependency structure. Such information is more accessible and can be shared between sentences from different domains. We propose a novel framework with dependency-aware GNN (DGNN) to learn these common structures from source domain and adapt them to target domain, alleviating the data scarcity issue and bridging the domain gap. Experimental results show that our method outperforms state-of-the-art methods.
Dave, Madhavi.  2022.  Internet of Things Security and Forensics: Concern and Challenges for Inspecting Cyber Attacks. 2022 Second International Conference on Next Generation Intelligent Systems (ICNGIS). :1—6.
The Internet of Things is an emerging technology for recent marketplace. In IoT, the heterogeneous devices are connected through the medium of the Internet for seamless communication. The devices used in IoT are resource-constrained in terms of memory, power and processing. Due to that, IoT system is unable to implement hi-end security for malicious cyber-attacks. The recent era is all about connecting IoT devices in various domains like medical, agriculture, transport, power, manufacturing, supply chain, education, etc. and thus need to be prevented from attacks and analyzed after attacks for legal action. The legal analysis of IoT data, devices and communication is called IoT forensics which is highly indispensable for various types of attacks on IoT system. This paper will review types of IoT attacks and its preventive measures in cyber security. It will also help in ascertaining IoT forensics and its challenges in detail. This paper will conclude with the high requirement of cyber security in IoT domains with implementation of standard rules for IoT forensics.
Alyami, Areej, Sammon, David, Neville, Karen, Mahony, Carolanne.  2022.  The Critical Success Factors for Security Education, Training and Awareness (SETA) Programmes. 2022 Cyber Research Conference - Ireland (Cyber-RCI). :1—12.
This study explores the Critical Success Factors (CSFs) for Security Education, Training and Awareness (SETA) programmes. Data is gathered from 20 key informants (using semi-structured interviews) from various geographic locations including the Gulf nations, Middle East, USA, UK, and Ireland. The analysis of these key informant interviews produces eleven CSFs for SETA programmes. These CSFs are mapped along the phases of a SETA programme lifecycle (design, development, implementation, and evaluation).
Yang, Jeong, Rae Kim, Young, Earwood, Brandon.  2022.  A Study of Effectiveness and Problem Solving on Security Concepts with Model-Eliciting Activities. 2022 IEEE Frontiers in Education Conference (FIE). :1—9.
Security is a critical aspect in the process of designing, developing, and testing software systems. Due to the increasing need for security-related skills within software systems, there is a growing demand for these skills to be taught in computer science. A series of security modules was developed not only to meet the demand but also to assess the impact of these modules on teaching critical cyber security topics in computer science courses. This full paper in the innovative practice category presents the outcomes of six security modules in a freshman-level course at two institutions. The study adopts a Model-Eliciting Activity (MEA) as a project for students to demonstrate an understanding of the security concepts. Two experimental studies were conducted: 1) Teaching effectiveness of implementing cyber security modules and MEA project, 2) Students’ experiences in conceptual modeling tasks in problem-solving. In measuring the effectiveness of teaching security concepts with the MEA project, students’ performance, attitudes, and interests as well as the instructor’s effectiveness were assessed. For the conceptual modeling tasks in problem-solving, the results of student outcomes were analyzed. After implementing the security modules with the MEA project, students showed a great understanding of cyber security concepts and an increased interest in broader computer science concepts. The instructor’s beliefs about teaching, learning, and assessment shifted from teacher-centered to student-centered during their experience with the security modules and MEA project. Although 64.29% of students’ solutions do not seem suitable for real-world implementation, 76.9% of the developed solutions showed a sufficient degree of creativity.
Kapila, Pooja, Sharma, Bhanu, Kumar, Sanjay, Sharma, Vishnu.  2022.  The importance of cyber security education in digitalization and Banking. 2022 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N). :2444—2447.
Large volumes of private data are gathered, processed, and stored on computers by governments, the military, organizations, financial institutions, colleges, and other enterprises. This data is then sent through networks to other computers. Urgent measures are required to safeguard sensitive personal and company data as well as national security due to the exponential development in number and complexity of cyber- attacks. The essay discusses the characteristics of the Internet and demonstrates how private and financial data can be transmitted over it while still being safeguarded. We show that robbery has spread throughout India and the rest of the world, endangering the global economy and security and giving rise to a variety of cyber-attacks.
Low, Xuan, Yang, DeQuan, Yang, DengPan.  2022.  Design and Implementation of Industrial Control Cyber Range System. 2022 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :166—170.
In the 21st century, world-leading industries are under the accelerated development of digital transformation. Along with information and data resources becoming more transparent on the Internet, many new network technologies were introduced, but cyber-attack also became a severe problem in cyberspace. Over time, industrial control networks are also forced to join the nodes of the Internet. Therefore, cybersecurity is much more complicated than before, and suffering risk of browsing unknown websites also increases. To practice defenses against cyber-attack effectively, Cyber Range is the best platform to emulate all cyber-attacks and defenses. This article will use VMware virtual machine emulation technology, research cyber range systems under industrial control network architecture, and design and implement an industrial control cyber range system. Using the industrial cyber range to perform vulnerability analyses and exploits on web servers, web applications, and operating systems. The result demonstrates the consequences of the vulnerability attack and raises awareness of cyber security among government, enterprises, education, and other related fields, improving the practical ability to defend against cybersecurity threats.
Lang-Muhr, Christoph, Tjoa, Simon, Machherndl, Stefan, Haslinger, Daniel.  2022.  Business Continuity & Disaster Recovery A simulation game for holistic cyber security education. 2022 IEEE Global Engineering Education Conference (EDUCON). :1296—1302.
At the end of the IT Security degree program a simulation game is conducted to repeat and consolidate the core skills of a Bachelor’s graduate. The focus is not on teaching content, but on the application of already learned skills. The scenario shows the students the risks of a completely networked world, which has come to a complete standstill due to a catastrophe. The participants occupy in groups the predefined companies, which are assigned with the reconstruction of the communication infrastructure (the internet). This paper describes the preparation, technical and organizational implementation of the. Also, the most important conclusions drawn by the authors.
Lang, Michael, Dowling, Seamus, Lennon, Ruth G..  2022.  The Current State of Cyber Security in Ireland. 2022 Cyber Research Conference - Ireland (Cyber-RCI). :1—2.
There is a stark contrast between the state of cyber security of national infrastructure in Ireland and the efforts underway to support cyber security technologists to work in the country. Notable attacks have recently occurred against the national health service, universities, and various other state bodies, prompting an interest in changing the current situation. This paper presents an overview of the security projects, commercial establishments, and policy in Ireland.