Visible to the public Biblio

Filters: Keyword is Flip-flops  [Clear All Filters]
2023-03-03
Yang, Gangqiang, Shi, Zhengyuan, Chen, Cheng, Xiong, Hailiang, Hu, Honggang, Wan, Zhiguo, Gai, Keke, Qiu, Meikang.  2022.  Work-in-Progress: Towards a Smaller than Grain Stream Cipher: Optimized FPGA Implementations of Fruit-80. 2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES). :19–20.
Fruit-80, an ultra-lightweight stream cipher with 80-bit secret key, is oriented toward resource constrained devices in the Internet of Things. In this paper, we propose area and speed optimization architectures of Fruit-80 on FPGAs. The area optimization architecture reuses NFSR&LFSR feedback functions and achieves the most suitable ratio of look-up-tables and flip-flops. The speed optimization architecture adopts a hybrid approach for parallelization and reduces the latency of long data paths by pre-generating primary feedback and inserting flip-flops. In conclusion, the optimal throughput-to-area ratio of the speed optimization architecture is better than that of Grain v1. The area optimization architecture occupies only 35 slices on Xilinx Spartan-3 FPGA, smaller than that of Grain and other common stream ciphers. To the best of our knowledge, this result sets a new record of the minimum area in lightweight cipher implementations on FPGA.
2021-02-15
Rahman, M. S., Hossain, M. S..  2020.  Highly Area-Efficient Implementation of Modular Multiplication for Elliptic Curve Cryptography. 2020 IEEE Region 10 Symposium (TENSYMP). :1078–1081.
The core operation of public-key cryptosystem e.g. elliptic curve cryptography (ECC) is the modular multiplication. It is the heavy computational block and the most costly cryptographic operation. Area-Efficient hardware architecture of 256-bit modified interleaved modular multiplication (IMM) is represented in this research. The novelty of this work is the device area minimization with keeping computational time as minimum as possible i.e., 2.09 μs for ECC with Koblitz Curve. In this research, IMM is implemented using a fewer number of resources such as 421 slices, 514 FF pairs, 522 registers, 1770 LUTs, and 1463 LUT-FF pairs. This hardware implementation provides a maximum frequency of 122.883 MHz and area-time (AT) product 0.879 and throughput rate 122.49 Mbps on Virtex-7 FPGA technology which is better than the other related recent works. The proposed design saves approximately 61.75% to 93.16% slice LUTs, 95.76% to 133.69% LUT-FF pairs, and 103.8% to 168.65% occupied slices on the Virtex-7 FPGA for the 256-bit prime field. This proposed hardware implementation design also keeps less AT product which is the most crucial parameter for ECC operation. To our best knowledge, this design provides better performance than the recently available designs for IMM for ECC operation.
2020-11-09
Karmakar, R., Jana, S. S., Chattopadhyay, S..  2019.  A Cellular Automata Guided Obfuscation Strategy For Finite-State-Machine Synthesis. 2019 56th ACM/IEEE Design Automation Conference (DAC). :1–6.
A popular countermeasure against IP piracy relies on obfuscating the Finite State Machine (FSM), which is assumed to be the heart of a digital system. In this paper, we propose to use a special class of non-group additive cellular automata (CA) called D1 * CA, and it's counterpart D1 * CAdual to obfuscate each state-transition of an FSM. The synthesized FSM exhibits correct state-transitions only for a correct key, which is a designer's secret. The proposed easily testable key-controlled FSM synthesis scheme can thwart reverse engineering attacks, thus offers IP protection.
Sengupta, A., Roy, D., Mohanty, S. P..  2019.  Low-Overhead Robust RTL Signature for DSP Core Protection: New Paradigm for Smart CE Design. 2019 IEEE International Conference on Consumer Electronics (ICCE). :1–6.
The design process of smart Consumer Electronics (CE) devices heavily relies on reusable Intellectual Property (IP) cores of Digital Signal Processor (DSP) and Multimedia Processor (MP). On the other hand, due to strict competition and rivalry between IP vendors, the problem of ownership conflict and IP piracy is surging. Therefore, to design a secured smart CE device, protection of DSP/MP IP core is essential. Embedding a robust IP owner's signature can protect an IP core from ownership abuse and forgery. This paper presents a covert signature embedding process for DSP/MP IP core at Register-transfer level (RTL). The secret marks of the signature are distributed over the entire design such that it provides higher robustness. For example for 8th order FIR filter, it incurs only between 6% and 3% area overhead for maximum and minimum size signature respectively compared to the non-signature FIR RTL design but with significantly enhanced security.
Rathor, M., Sengupta, A..  2019.  Enhanced Functional Obfuscation of DSP core using Flip-Flops and Combinational logic. 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin). :1–5.
Due to globalization of Integrated Circuit (IC) design flow, Intellectual Property (IP) cores have increasingly become susceptible to various hardware threats such as Trojan insertion, piracy, overbuilding etc. An IP core can be secured against these threats using functional obfuscation based security mechanism. This paper presents a functional obfuscation of digital signal processing (DSP) core for consumer electronics systems using a novel IP core locking block (ILB) logic that leverages the structure of flip-flops and combinational circuits. These ILBs perform the locking of the functionality of a DSP design and actuate the correct functionality only on application of a valid key sequence. In existing approaches so far, executing exhaustive trials are sufficient to extract the valid keys from an obfuscated design. However, proposed work is capable of hindering the extraction of valid keys even on exhaustive trials, unless successfully applied in the first attempt only. In other words, the proposed work drastically reduces the probability of obtaining valid key of a functionally obfuscated design in exhaustive trials. Experimental results indicate that the proposed approach achieves higher security and lower design overhead than previous works.
2020-03-16
Chau, Cuong, Hunt, Warren A., Kaufmann, Matt, Roncken, Marly, Sutherland, Ivan.  2019.  A Hierarchical Approach to Self-Timed Circuit Verification. 2019 25th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC). :105–113.
Self-timed circuits can be modeled in a link-joint style using a formally defined hardware description language. It has previously been shown how functional properties of these models can be formally verified with the ACL2 theorem prover using a scalable, hierarchical method. Here we extend that method to parameterized circuit families that may have loops and non-deterministic outputs. We illustrate this extension with iterative self-timed circuits that calculate the greatest common divisor of two natural numbers, with circuits that perform arbitrated merges non-deterministically, and with circuits that combine both of these.
2020-02-26
Han, Tao, Wang, Yuze, Liu, Peng.  2019.  Hardware Trojans Detection at Register Transfer Level Based on Machine Learning. 2019 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.

To accurately detect Hardware Trojans in integrated circuits design process, a machine-learning-based detection method at the register transfer level (RTL) is proposed. In this method, circuit features are extracted from the RTL source codes and a training database is built using circuits in a Hardware Trojans library. The training database is used to train an efficient detection model based on the gradient boosting algorithm. In order to expand the Hardware Trojans library for detecting new types of Hardware Trojans and update the detection model in time, a server-client mechanism is used. The proposed method can achieve 100% true positive rate and 89% true negative rate, on average, based on the benchmark from Trust-Hub.

2019-04-05
Wu, C., Kuo, M., Lee, K..  2018.  A Dynamic-Key Secure Scan Structure Against Scan-Based Side Channel and Memory Cold Boot Attacks. 2018 IEEE 27th Asian Test Symposium (ATS). :48-53.

Scan design is a universal design for test (DFT) technology to increase the observability and controllability of the circuits under test by using scan chains. However, it also leads to a potential security problem that attackers can use scan design as a backdoor to extract confidential information. Researchers have tried to address this problem by using secure scan structures that usually have some keys to confirm the identities of users. However, the traditional methods to store intermediate data or keys in memory are also under high risk of being attacked. In this paper, we propose a dynamic-key secure DFT structure that can defend scan-based and memory attacks without decreasing the system performance and the testability. The main idea is to build a scan design key generator that can generate the keys dynamically instead of storing and using keys in the circuit statically. Only specific patterns derived from the original test patterns are valid to construct the keys and hence the attackers cannot shift in any other patterns to extract correct internal response from the scan chains or retrieve the keys from memory. Analysis results show that the proposed method can achieve a very high security level and the security level will not decrease no matter how many guess rounds the attackers have tried due to the dynamic nature of our method.

2015-05-05
Hong Wen, Jie Tang, Jinsong Wu, Huanhuan Song, Tingyong Wu, Bin Wu, Pin-Han Ho, Shi-Chao Lv, Li-Min Sun.  2015.  A Cross-Layer Secure Communication Model Based on Discrete Fractional Fourier Fransform (DFRFT). Emerging Topics in Computing, IEEE Transactions on. 3:119-126.

Discrete fractional Fourier transform (DFRFT) is a generalization of discrete Fourier transform. There are a number of DFRFT proposals, which are useful for various signal processing applications. This paper investigates practical solutions toward the construction of unconditionally secure communication systems based on DFRFT via cross-layer approach. By introducing a distort signal parameter, the sender randomly flip-flops between the distort signal parameter and the general signal parameter to confuse the attacker. The advantages of the legitimate partners are guaranteed. We extend the advantages between legitimate partners via developing novel security codes on top of the proposed cross-layer DFRFT security communication model, aiming to achieve an error-free legitimate channel while preventing the eavesdropper from any useful information. Thus, a cross-layer strong mobile communication secure model is built.