Biblio
To accurately detect Hardware Trojans in integrated circuits design process, a machine-learning-based detection method at the register transfer level (RTL) is proposed. In this method, circuit features are extracted from the RTL source codes and a training database is built using circuits in a Hardware Trojans library. The training database is used to train an efficient detection model based on the gradient boosting algorithm. In order to expand the Hardware Trojans library for detecting new types of Hardware Trojans and update the detection model in time, a server-client mechanism is used. The proposed method can achieve 100% true positive rate and 89% true negative rate, on average, based on the benchmark from Trust-Hub.
Scan design is a universal design for test (DFT) technology to increase the observability and controllability of the circuits under test by using scan chains. However, it also leads to a potential security problem that attackers can use scan design as a backdoor to extract confidential information. Researchers have tried to address this problem by using secure scan structures that usually have some keys to confirm the identities of users. However, the traditional methods to store intermediate data or keys in memory are also under high risk of being attacked. In this paper, we propose a dynamic-key secure DFT structure that can defend scan-based and memory attacks without decreasing the system performance and the testability. The main idea is to build a scan design key generator that can generate the keys dynamically instead of storing and using keys in the circuit statically. Only specific patterns derived from the original test patterns are valid to construct the keys and hence the attackers cannot shift in any other patterns to extract correct internal response from the scan chains or retrieve the keys from memory. Analysis results show that the proposed method can achieve a very high security level and the security level will not decrease no matter how many guess rounds the attackers have tried due to the dynamic nature of our method.
Discrete fractional Fourier transform (DFRFT) is a generalization of discrete Fourier transform. There are a number of DFRFT proposals, which are useful for various signal processing applications. This paper investigates practical solutions toward the construction of unconditionally secure communication systems based on DFRFT via cross-layer approach. By introducing a distort signal parameter, the sender randomly flip-flops between the distort signal parameter and the general signal parameter to confuse the attacker. The advantages of the legitimate partners are guaranteed. We extend the advantages between legitimate partners via developing novel security codes on top of the proposed cross-layer DFRFT security communication model, aiming to achieve an error-free legitimate channel while preventing the eavesdropper from any useful information. Thus, a cross-layer strong mobile communication secure model is built.