Biblio
This paper examines multiple machine learning models to find the model that best indicates anomalous activity in an industrial control system that is under a software-based attack. The researched machine learning models are Random Forest, Gradient Boosting Machine, Artificial Neural Network, and Recurrent Neural Network classifiers built-in Python and tested against the HIL-based Augmented ICS dataset. Although the results showed that Random Forest, Gradient Boosting Machine, Artificial Neural Network, and Long Short-Term Memory classification models have great potential for anomaly detection in industrial control systems, we found that Random Forest with tuned hyperparameters slightly outperformed the other models.
According to the information security requirements of the industrial control system and the technical features of the existing defense measures, a dynamic security control strategy based on trusted computing is proposed. According to the strategy, the Industrial Cyber-Physical System system information security solution is proposed, and the linkage verification mechanism between the internal fire control wall of the industrial control system, the intrusion detection system and the trusted connection server is provided. The information exchange of multiple network security devices is realized, which improves the comprehensive defense capability of the industrial control system, and because the trusted platform module is based on the hardware encryption, storage, and control protection mode, It overcomes the common problem that the traditional repairing and stitching technique based on pure software leads to easy breakage, and achieves the goal of significantly improving the safety of the industrial control system . At the end of the paper, the system analyzes the implementation of the proposed secure industrial control information security system based on the trustworthy calculation.
This paper presents a novel game theoretic attack-defence decision making framework for cyber-physical system (CPS) security. Game theory is a powerful tool to analyse the interaction between the attacker and the defender in such scenarios. In the formulation of games, participants are usually assumed to be rational. They will always choose the action to pursuit maximum payoff according to the knowledge of the strategic situation they are in. However, in reality the capacity of rationality is often bounded by the level of intelligence, computational resources and the amount of available information. This paper formulates the concept of bounded rationality into the decision making process, in order to optimise the defender's strategy considering that the defender and the attacker have incomplete information of each other and limited computational capacity. Under the proposed framework, the defender can often benefit from deviating from the minimax Nash Equilibrium strategy, the theoretically expected outcome of rational game playing. Numerical results are presented and discussed in order to demonstrate the proposed technique.
Nowadays, physical health of equipment controlled by Cyber-Physical Systems (CPS) is a significant concern. This paper reports a work, in which, a hardware is placed between Programmable Logic Controller (PLC) and the actuator as a solution. The proposed hardware operates in two conditions, i.e. passive and active. Operation of the proposed solution is based on the repetitive operational profile of the actuators. The normal operational profile of the actuator is fed to the protective hardware and is considered as the normal operating condition. In the normal operating condition, the middleware operates in its passive mode and simply monitors electronic signals passing between PLC and Actuator. In case of any malicious operation, the proposed hardware operates in its active mode and both slowly stops the actuator and sends an alert to SCADA server initiating execution of the actuator's emergency profile. Thus, the proposed hardware gains control over the actuator and prevents any physical damage on the operating devices. Two sample experiments are reported in which, results of implementing the proposed solution are reported and assessed. Results show that once the PLC sends incorrect data to actuator, the proposed hardware detects it as an anomaly. Therefore, it does not allow the PLC to send incorrect and unauthorized data pattern to its actuator. Significance of the paper is in introducing a solution to prevent destruction of physical devices apart from source or purpose of the encountered anomaly and apart from CPS functionality or PLC model and operation.
Compromised smart meters sending false power consumption data in Advanced Metering Infrastructure (AMI) may have drastic consequences on the smart grid»s operation. Most existing defense models only deal with electricity theft from individual customers (isolated attacks) using supervised classification techniques that do not offer scalable or real time solutions. Furthermore, the cyber and interconnected nature of AMIs can also be exploited by organized adversaries who have the ability to orchestrate simultaneous data falsification attacks after compromising several meters, and also have more complex goals than just electricity theft. In this paper, we first propose a real time semi-supervised anomaly based consensus correction technique that detects the presence and type of smart meter data falsification, and then performs a consensus correction accordingly. Subsequently, we propose a semi-supervised consensus based trust scoring model, that is able to identify the smart meters injecting false data. The main contribution of the proposed approach is to provide a practical framework for compromised smart meter identification that (i) is not supervised (ii) enables quick identification (iii) scales classification error rates better for larger sized AMIs; (iv) counters threats from both isolated and orchestrated attacks; and (v) simultaneously works for a variety of data falsification types. Extensive experimental validation using two real datasets from USA and Ireland, demonstrates the ability of our proposed method to identify compromised meters in near real time across different datasets.
A smart grid is a fully automated power electricity network, which operates, protects and controls all its physical environments of power electricity infrastructure being able to supply energy in an efficient and reliable way. As the importance of cyber-physical system (CPS) security is growing, various vulnerability analysis methodologies for general systems have been suggested, whereas there has been few practical research targeting the smart grid infrastructure. In this paper, we highlight the significance of security vulnerability analysis in the smart grid environment. Then we introduce various automated vulnerability analysis techniques from executable files. In our approach, we propose a novel binary-based vulnerability discovery method for AMI and EV charging system to automatically extract security-related features from the embedded software. Finally, we present the test result of vulnerability discovery applied for AMI and EV charging system in Korean smart grid environment.
In this paper, we propose a novel adaptive control architecture for addressing security and safety in cyber-physical systems subject to exogenous disturbances. Specifically, we develop an adaptive controller for time-invariant, state-dependent adversarial sensor and actuator attacks in the face of stochastic exogenous disturbances. We show that the proposed controller guarantees uniform ultimate boundedness of the closed-loop dynamical system in a mean-square sense. We further discuss the practicality of the proposed approach and provide a numerical example involving the lateral directional dynamics of an aircraft to illustrate the efficacy of the proposed adaptive control architecture.
In this paper, a new method for quantitative evaluation of the security of cyber-physical systems (CPSs) is proposed. The proposed method models the different classes of adversarial attacks against CPSs, including cross-domain attacks, i.e., cyber-to-cyber and cyber-to-physical attacks. It also takes the secondary consequences of attacks on CPSs into consideration. The intrusion process of attackers has been modeled using attack graph and the consequence estimation process of the attack has been investigated using process model. The security attributes and the special parameters involved in the security analysis of CPSs, have been identified and considered. The quantitative evaluation has been done using the probability of attacks, time-to-shutdown of the system and security risks. The validation phase of the proposed model is performed as a case study by applying it to a boiling water power plant and estimating the suitable security measures.
An application of two Cyber-Physical System (CPS) security countermeasures - Intelligent Checker (IC) and Cross-correlator - for enhancing CPS safety and achieving required CPS safety integrity level is presented. ICs are smart sensors aimed at detecting attacks in CPS and alerting the human operators. Cross-correlator is an anomaly detection technique for detecting deception attacks. We show how ICs could be implemented at three different CPS safety protection layers to maintain CPS in a safe state. In addition, we combine ICs with the cross-correlator technique to assure high probability of failure detection. Performance simulations show that a combination of these two security countermeasures is effective in detecting and mitigating CPS failures, including catastrophic failures.