Visible to the public Biblio

Filters: Keyword is Robot vision systems  [Clear All Filters]
2023-08-24
Gong, Xiao, Li, Mengwei, Zhao, Zhengbin, Cui, Dengqi.  2022.  Research on industrial Robot system security based on Industrial Internet Platform. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :214–218.
The industrial Internet platform has been applied to various fields of industrial production, effectively improving the data flow of all elements in the production process, improving production efficiency, reducing production costs, and ensuring the market competitiveness of enterprises. The premise of the effective application of the industrial Internet platform is the interconnection of industrial equipment. In the industrial Internet platform, industrial robot is a very common industrial control device. These industrial robots are connected to the control network of the industrial Internet platform, which will have obvious advantages in production efficiency and equipment maintenance, but at the same time will cause more serious network security problems. The industrial robot system based on the industrial Internet platform not only increases the possibility of industrial robots being attacked, but also aggravates the loss and harm caused by industrial robots being attacked. At the same time, this paper illustrates the effects and scenarios of industrial robot attacks based on industrial interconnection platforms from four different scenarios of industrial robots being attacked. Availability and integrity are related to the security of the environment.
2022-02-03
Rishikesh, Bhattacharya, Ansuman, Thakur, Atul, Banda, Gourinath, Ray, Rajarshi, Halder, Raju.  2021.  Secure Communication System Implementation for Robot-based Surveillance Applications. 2021 International Symposium of Asian Control Association on Intelligent Robotics and Industrial Automation (IRIA). :270—275.
Surveillance systems involve a camera module (at a fixed location) connected/streaming video via Internet Protocol to a (video) server. In our IMPRINT consortium project, by mounting miniaturised camera module/s on mobile quadruped-lizard like robots, we developed a stealth surveillance system, which could be very useful as a monitoring system in hostage situations. In this paper, we report about the communication system that enables secure transmission of: Live-video from robots to a server, GPS-coordinates of robots to the server and Navigation-commands from server to robots. Since the end application is for stealth surveillance, often can involve sensitive data, data security is a crucial concern, especially when data is transmitted through the internet. We use the RC4 algorithm for video transmission; while the AES algorithm is used for GPS data and other commands’ data transmission. Advantages of the developed system is easy to use for its web interface which is provided on the control station. This communication system, because of its internet-based communication, it is compatible with any operating system environment. The lightweight program runs on the control station (on the server side) and robot body that leads to less memory consumption and faster processing. An important requirement in such hostage surveillance systems is fast data processing and data-transmission rate. We have implemented this communication systems with a single-board computer having GPU that performs better in terms of speed of transmission and processing of data.
Rani, V. Usha, Sridevi, J, Sai, P. Mohan.  2021.  Web Controlled Raspberry Pi Robot Surveillance. 2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET). :1—5.
Security is a major thing to focus on during this modern era as it is very important to secure your surroundings for the well being of oneself and his family, But there are many drawbacks of using conventional security surveillance cameras as they have to be set in a particular angle for good visual and they do not cover a large area, conventional security cameras can only be used from a particular device and cannot alert the user during an unforeseen circumstance. Hence we require a much more efficient device for better security a web controlled surveillance robot is much more practical device to be used compared to conventional security surveillance, this system needs a single camera to perform its operation and the user can monitor a wide range of area, any device with a wireless connection to the internet can be used to operate this device. This robot can move to any location within the range of the network and can be accessed globally from anywhere and as it uses only one camera to secure a large area it is also cost-efficient. At the core of the system lies Raspberry-pi which is responsible for all the operation of the system and the size of the device can be engineered according to the area it is to be used.
2020-12-17
Amrouche, F., Lagraa, S., Frank, R., State, R..  2020.  Intrusion detection on robot cameras using spatio-temporal autoencoders: A self-driving car application. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). :1—5.

Robot Operating System (ROS) is becoming more and more important and is used widely by developers and researchers in various domains. One of the most important fields where it is being used is the self-driving cars industry. However, this framework is far from being totally secure, and the existing security breaches do not have robust solutions. In this paper we focus on the camera vulnerabilities, as it is often the most important source for the environment discovery and the decision-making process. We propose an unsupervised anomaly detection tool for detecting suspicious frames incoming from camera flows. Our solution is based on spatio-temporal autoencoders used to truthfully reconstruct the camera frames and detect abnormal ones by measuring the difference with the input. We test our approach on a real-word dataset, i.e. flows coming from embedded cameras of self-driving cars. Our solution outperforms the existing works on different scenarios.

Maram, S. S., Vishnoi, T., Pandey, S..  2019.  Neural Network and ROS based Threat Detection and Patrolling Assistance. 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP). :1—5.

To bring a uniform development platform which seamlessly combines hardware components and software architecture of various developers across the globe and reduce the complexity in producing robots which help people in their daily ergonomics. ROS has come out to be a game changer. It is disappointing to see the lack of penetration of technology in different verticals which involve protection, defense and security. By leveraging the power of ROS in the field of robotic automation and computer vision, this research will pave path for identification of suspicious activity with autonomously moving bots which run on ROS. The research paper proposes and validates a flow where ROS and computer vision algorithms like YOLO can fall in sync with each other to provide smarter and accurate methods for indoor and limited outdoor patrolling. Identification of age,`gender, weapons and other elements which can disturb public harmony will be an integral part of the research and development process. The simulation and testing reflects the efficiency and speed of the designed software architecture.

Lagraa, S., Cailac, M., Rivera, S., Beck, F., State, R..  2019.  Real-Time Attack Detection on Robot Cameras: A Self-Driving Car Application. 2019 Third IEEE International Conference on Robotic Computing (IRC). :102—109.

The Robot Operating System (ROS) are being deployed for multiple life critical activities such as self-driving cars, drones, and industries. However, the security has been persistently neglected, especially the image flows incoming from camera robots. In this paper, we perform a structured security assessment of robot cameras using ROS. We points out a relevant number of security flaws that can be used to take over the flows incoming from the robot cameras. Furthermore, we propose an intrusion detection system to detect abnormal flows. Our defense approach is based on images comparisons and unsupervised anomaly detection method. We experiment our approach on robot cameras embedded on a self-driving car.