Visible to the public Biblio

Filters: Keyword is security testing  [Clear All Filters]
2023-07-13
Eisele, Max.  2022.  Debugger-driven Embedded Fuzzing. 2022 IEEE Conference on Software Testing, Verification and Validation (ICST). :483–485.
Embedded Systems - the hidden computers in our lives - are deployed in the billionths and are already in the focus of attackers. They pose security risks when not tested and maintained thoroughly. In recent years, fuzzing has become a promising technique for automated security testing of programs, which can generate tons of test inputs for a program. Fuzzing is hardly applied to embedded systems, because of their high diversity and closed character. During my research I want tackle that gap in fuzzing embedded systems - short: “Embedded Fuzzing”. My goal is to obtain insights of the embedded system during execution, by using common debugging interfaces and hardware breakpoints to enable guided fuzzing in a generic and widely applicable way. Debugging interfaces and hardware breakpoints are available for most common microcontrollers, generating a potential industry impact. Preliminary results show that the approach covers basic blocks faster than blackbox fuzzing. Additionally, it is source code agnostic and leaves the embedded firmware unaltered.
ISSN: 2159-4848
2023-05-12
Hariharan, Sheela, Papadopoulos, Alessandro V., Nolte, Thomas.  2022.  On In-Vehicle Network Security Testing Methodologies in Construction Machinery. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1–4.

In construction machinery, connectivity delivers higher advantages in terms of higher productivity, lower costs, and most importantly safer work environment. As the machinery grows more dependent on internet-connected technologies, data security and product cybersecurity become more critical than ever. These machines have more cyber risks compared to other automotive segments since there are more complexities in software, larger after-market options, use more standardized SAE J1939 protocol, and connectivity through long-distance wireless communication channels (LTE interfaces for fleet management systems). Construction machinery also operates throughout the day, which means connected and monitored endlessly. Till today, construction machinery manufacturers are investigating the product cybersecurity challenges in threat monitoring, security testing, and establishing security governance and policies. There are limited security testing methodologies on SAE J1939 CAN protocols. There are several testing frameworks proposed for fuzz testing CAN networks according to [1]. This paper proposes security testing methods (Fuzzing, Pen testing) for in-vehicle communication protocols in construction machinery.

2023-03-31
Shahid, Jahanzeb, Muhammad, Zia, Iqbal, Zafar, Khan, Muhammad Sohaib, Amer, Yousef, Si, Weisheng.  2022.  SAT: Integrated Multi-agent Blackbox Security Assessment Tool using Machine Learning. 2022 2nd International Conference on Artificial Intelligence (ICAI). :105–111.
The widespread adoption of eCommerce, iBanking, and eGovernment institutions has resulted in an exponential rise in the use of web applications. Due to a large number of users, web applications have become a prime target of cybercriminals who want to steal Personally Identifiable Information (PII) and disrupt business activities. Hence, there is a dire need to audit the websites and ensure information security. In this regard, several web vulnerability scanners are employed for vulnerability assessment of web applications but attacks are still increasing day by day. Therefore, a considerable amount of research has been carried out to measure the effectiveness and limitations of the publicly available web scanners. It is identified that most of the publicly available scanners possess weaknesses and do not generate desired results. In this paper, the evaluation of publicly available web vulnerability scanners is performed against the top ten OWASP11OWASP® The Open Web Application Security Project (OWASP) is an online community that produces comprehensive articles, documentation, methodologies, and tools in the arena of web and mobile security. vulnerabilities and their performance is measured on the precision of their results. Based on these results, we proposed an Integrated Multi-Agent Blackbox Security Assessment Tool (SAT) for the security assessment of web applications. Research has proved that the vulnerabilities assessment results of the SAT are more extensive and accurate.
2022-04-19
Garn, Bernhard, Sebastian Lang, Daniel, Leithner, Manuel, Richard Kuhn, D., Kacker, Raghu, Simos, Dimitris E..  2021.  Combinatorially XSSing Web Application Firewalls. 2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :85–94.
Cross-Site scripting (XSS) is a common class of vulnerabilities in the domain of web applications. As it re-mains prevalent despite continued efforts by practitioners and researchers, site operators often seek to protect their assets using web application firewalls (WAFs). These systems employ filtering mechanisms to intercept and reject requests that may be suitable to exploit XSS flaws and related vulnerabilities such as SQL injections. However, they generally do not offer complete protection and can often be bypassed using specifically crafted exploits. In this work, we evaluate the effectiveness of WAFs to detect XSS exploits. We develop an attack grammar and use a combinatorial testing approach to generate attack vectors. We compare our vectors with conventional counterparts and their ability to bypass different WAFs. Our results show that the vectors generated with combinatorial testing perform equal or better in almost all cases. They further confirm that most of the rule sets evaluated in this work can be bypassed by at least one of these crafted inputs.
2021-04-08
Westland, T., Niu, N., Jha, R., Kapp, D., Kebede, T..  2020.  Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :37–44.
Automatically generating exploits for attacks receives much attention in security testing and auditing. However, little is known about the continuous effect of automatic attack generation and detection. In this paper, we develop an analytic model to understand the cost-benefit tradeoffs in light of the process of vulnerability discovery. We develop a three-phased model, suggesting that the cumulative malware detection has a productive period before the rate of gain flattens. As the detection mechanisms co-evolve, the gain will likely increase. We evaluate our analytic model by using an anti-virus tool to detect the thousands of Trojans automatically created. The anti-virus scanning results over five months show the validity of the model and point out future research directions.
2021-02-16
Wang, Y., Kjerstad, E., Belisario, B..  2020.  A Dynamic Analysis Security Testing Infrastructure for Internet of Things. 2020 Sixth International Conference on Mobile And Secure Services (MobiSecServ). :1—6.
IoT devices such as Google Home and Amazon Echo provide great convenience to our lives. Many of these IoT devices collect data including Personal Identifiable Information such as names, phone numbers, and addresses and thus IoT security is important. However, conducting security analysis on IoT devices is challenging due to the variety, the volume of the devices, and the special skills required for hardware and software analysis. In this research, we create and demonstrate a dynamic analysis security testing infrastructure for capturing network traffic from IoT devices. The network traffic is automatically mirrored to a server for live traffic monitoring and offline data analysis. Using the dynamic analysis security testing infrastructure, we conduct extensive security analysis on network traffic from Google Home and Amazon Echo. Our testing results indicate that Google Home enforces tighter security controls than Amazon Echo while both Google and Amazon devices provide the desired security level to protect user data in general. The dynamic analysis security testing infrastructure presented in the paper can be utilized to conduct similar security analysis on any IoT devices.
2020-11-02
Aman, W., Khan, F..  2019.  Ontology-based Dynamic and Context-aware Security Assessment Automation for Critical Applications. 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE). :644–647.

Several assessment techniques and methodologies exist to analyze the security of an application dynamically. However, they either are focused on a particular product or are mainly concerned about the assessment process rather than the product's security confidence. Most crucially, they tend to assess the security of a target application as a standalone artifact without assessing its host infrastructure. Such attempts can undervalue the overall security posture since the infrastructure becomes crucial when it hosts a critical application. We present an ontology-based security model that aims to provide the necessary knowledge, including network settings, application configurations, testing techniques and tools, and security metrics to evaluate the security aptitude of a critical application in the context of its hosting infrastructure. The objective is to integrate the current good practices and standards in security testing and virtualization to furnish an on-demand and test-ready virtual target infrastructure to execute the critical application and to initiate a context-aware and quantifiable security assessment process in an automated manner. Furthermore, we present a security assessment architecture to reflect on how the ontology can be integrated into a standard process.

Hamad, R. M. H., Fayoumi, M. Al.  2019.  Scalable Quality and Testing Lab (SQTL): Mission-Critical Applications Testing. 2019 International Conference on Computer and Information Sciences (ICCIS). :1–7.

Currently, the complexity of software quality and testing is increasing exponentially with a huge number of challenges knocking doors, especially when testing a mission-critical application in banking and other critical domains, or the new technology trends with decentralized and nonintegrated testing tools. From practical experience, software testing has become costly and more effort-intensive with unlimited scope. This thesis promotes the Scalable Quality and Testing Lab (SQTL), it's a centralized quality and testing platform, which integrates a powerful manual, automation and business intelligence tools. SQTL helps quality engineers (QE) effectively organize, manage and control all testing activities in one centralized lab, starting from creating test cases, then executing different testing types such as web, security and others. And finally, ending with analyzing and displaying all testing activities result in an interactive dashboard, which allows QE to forecast new bugs especially those related to security. The centralized SQTL is to empower QE during the testing cycle, help them to achieve a greater level of software quality in minimum time, effort and cost, and decrease defect density metric.

2020-09-28
Simos, Dimitris E., Garn, Bernhard, Zivanovic, Jovan, Leithner, Manuel.  2019.  Practical Combinatorial Testing for XSS Detection using Locally Optimized Attack Models. 2019 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :122–130.
In this paper, we present a combinatorial testing methodology for automated black-box security testing of complex web applications. The focus of our work is the identification of Cross-site Scripting (XSS) vulnerabilities. We introduce a new modelling scheme for test case generation of XSS attack vectors consisting of locally optimized attack models. The modelling approach takes into account the response and behavior of the web application and is particularly efficient when used in conjunction with combinatorial testing. In addition to the modelling scheme, we present a research prototype of a security testing tool called XSSInjector, which executes attack vectors generated from our methodology against web applications. The tool also employs a newly developed test oracle for detecting XSS which allow us to precisely identify whether injected JavaScript is actually executed and thus eliminate false positives. Our testing methodology is sufficiently generic to be applied to any web application that returns HTML code. We describe the foundations of our approach and validate it via an extensive case study using a verification framework and real world web applications. In particular, we have found several new critical vulnerabilities in popular forum software, library management systems and gallery packages.
2020-05-15
Oujezsky, Vaclav, Chapcak, David, Horvath, Tomas, Munster, Petr.  2019.  Security Testing Of Active Optical Network Devices. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP). :9—13.

This article presents results and overview of conducted testing of active optical network devices. The base for the testing is originating in Kali Linux and penetration testing generally. The goal of tests is to either confirm or disprove a vulnerability of devices used in the tested polygon. The first part deals with general overview and topology of testing devices, the next part is dedicated to active and passive exploration and exploits. The last part provides a summary of the results.

2020-03-09
Moukahal, Lama, Zulkernine, Mohammad.  2019.  Security Vulnerability Metrics for Connected Vehicles. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :17–23.

Software integration in modern vehicles is continuously expanding. This is due to the fact that vehicle manufacturers are always trying to enhance and add more innovative and competitive features that may rely on complex software functionalities. However, these features come at a cost. They amplify the security vulnerabilities in vehicles and lead to more security issues in today's automobiles. As a result, the need for identifying vulnerable components in a vehicle software system has become crucial. Security experts need to know which components of the vehicle software system can be exploited for attacks and should focus their testing and inspection efforts on it. Nevertheless, it is a challenging and costly task to identify these weak components in a vehicle's system. In this paper, we propose some security vulnerability metrics for connected vehicles that aim to assist software testers during the development life-cycle in order to identify the frail links that put the vehicle at highsecurity risks. Vulnerable function assessment can give software testers a good idea about which components in a connected vehicle need to be prioritized in order to mitigate the risk and hence secure the vehicle. The proposed metrics were applied to OpenPilot - a software that provides Autopilot feature - and has been integrated with 48 different vehicles.. The application shows how the defined metrics can be effectively used to quantitatively measure the vulnerabilities of a vehicle software system.

Chhillar, Dheeraj, Sharma, Kalpana.  2019.  ACT Testbot and 4S Quality Metrics in XAAS Framework. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). :503–509.

The purpose of this paper is to analyze all Cloud based Service Models, Continuous Integration, Deployment and Delivery process and propose an Automated Continuous Testing and testing as a service based TestBot and metrics dashboard which will be integrated with all existing automation, bug logging, build management, configuration and test management tools. Recently cloud is being used by organizations to save time, money and efforts required to setup and maintain infrastructure and platform. Continuous Integration and Delivery is in practice nowadays within Agile methodology to give capability of multiple software releases on daily basis and ensuring all the development, test and Production environments could be synched up quickly. In such an agile environment there is need to ramp up testing tools and processes so that overall regression testing including functional, performance and security testing could be done along with build deployments at real time. To support this phenomenon, we researched on Continuous Testing and worked with industry professionals who are involved in architecting, developing and testing the software products. A lot of research has been done towards automating software testing so that testing of software product could be done quickly and overall testing process could be optimized. As part of this paper we have proposed ACT TestBot tool, metrics dashboard and coined 4S quality metrics term to quantify quality of the software product. ACT testbot and metrics dashboard will be integrated with Continuous Integration tools, Bug reporting tools, test management tools and Data Analytics tools to trigger automation scripts, continuously analyze application logs, open defects automatically and generate metrics reports. Defect pattern report will be created to support root cause analysis and to take preventive action.

2020-02-10
Simos, Dimitris E., Zivanovic, Jovan, Leithner, Manuel.  2019.  Automated Combinatorial Testing for Detecting SQL Vulnerabilities in Web Applications. 2019 IEEE/ACM 14th International Workshop on Automation of Software Test (AST). :55–61.

In this paper, we present a combinatorial testing methodology for testing web applications in regards to SQL injection vulnerabilities. We describe three attack grammars that were developed and used to generate concrete attack vectors. Furthermore, we present and evaluate two different oracles used to observe the application's behavior when subjected to such attack vectors. We also present a prototype tool called SQLInjector capable of automated SQL injection vulnerability testing for web applications. The developed methodology can be applied to any web application that uses server side scripting and HTML for handling user input and has a SQL database backend. Our approach relies on the use of a database proxy, making this a gray-box testing method. We establish the effectiveness of the proposed tool with the WAVSEP verification framework and conduct a case study on real-world web applications, where we are able to discover both known vulnerabilities and additional previously undiscovered flaws.

Awang, Nor Fatimah, Jarno, Ahmad Dahari, Marzuki, Syahaneim, Jamaludin, Nor Azliana Akmal, Majid, Khairani Abd, Tajuddin, Taniza.  2019.  Method For Generating Test Data For Detecting SQL Injection Vulnerability in Web Application. 2019 7th International Conference on Cyber and IT Service Management (CITSM). 7:1–5.
SQL injection is among the most dangerous vulnerabilities in web applications that allow attackers to bypass the authentication and access the application database. Security testing is one of the techniques required to detect the existence of SQL injection vulnerability in a web application. However, inadequate test data during testing can affect the effectiveness of security testing. Therefore, in this paper, the new algorithm is designed and developed by applying the Cartesian Product technique in order to generate a set of invalid test data automatically. A total of 624 invalid test data were generated in order to increase the detection rate of SQL injection vulnerability. Finally, the ideas obtained from our method is able to detect the vulnerability of SQL injection in web application.
2019-02-08
Nichols, W., Hawrylak, P. J., Hale, J., Papa, M..  2018.  Methodology to Estimate Attack Graph System State from a Simulation of a Nuclear Research Reactor. 2018 Resilience Week (RWS). :84-87.
Hybrid attack graphs are a powerful tool when analyzing the cybersecurity of a cyber-physical system. However, it is important to ensure that this tool correctly models reality, particularly when modelling safety-critical applications, such as a nuclear reactor. By automatically verifying that a simulation reaches the state predicted by an attack graph by analyzing the final state of the simulation, this verification procedure can be accomplished. As such, a mechanism to estimate if a simulation reaches the expected state in a hybrid attack graph is proposed here for the nuclear reactor domain.
Katt, Basel, Prasher, Nishu.  2018.  Quantitative Security Assurance Metrics: REST API Case Studies. Proceedings of the 12th European Conference on Software Architecture: Companion Proceedings. :59:1-59:7.

Security assurance is the confidence that a system meets its security requirements based on specific evidences that an assurance technique provide. The notion of measuring security is complex and tricky. Existing approaches either (1) consider one aspect of assurance, like security requirements fulfillment, or threat/vulnerability existence, or (2) do not consider the relevance of the different security requirements to the evaluated application context. Furthermore, they are mostly qualitative in nature and are heavily based on manual processing, which make them costly and time consuming. Therefore, they are not widely used and applied, especially by small and medium-sized enterprises (SME), which constitute the backbone of the Norwegian economy. In this paper, we propose a quantification method that aims at evaluating security assurance of systems by measuring (1) the level of confidence that the mechanisms fulfilling security requirements are present and (2) the vulnerabilities associated with possible security threats are absent. Additionally, an assurance evaluation process is proposed. Two case studies applying our method are presented. The case studies use our assurance method to evaluate the security level of two REST APIs developed by Statistics Norway, where one of the authors is employed. Analysis shows that the API with the most security mechanisms implemented got a slightly higher security assurance score. Security requirement relevance and vulnerability impact played a role in the overall scores.

2018-05-24
Maraj, A., Rogova, E., Jakupi, G., Grajqevci, X..  2017.  Testing Techniques and Analysis of SQL Injection Attacks. 2017 2nd International Conference on Knowledge Engineering and Applications (ICKEA). :55–59.

It is a well-known fact that nowadays access to sensitive information is being performed through the use of a three-tier-architecture. Web applications have become a handy interface between users and data. As database-driven web applications are being used more and more every day, web applications are being seen as a good target for attackers with the aim of accessing sensitive data. If an organization fails to deploy effective data protection systems, they might be open to various attacks. Governmental organizations, in particular, should think beyond traditional security policies in order to achieve proper data protection. It is, therefore, imperative to perform security testing and make sure that there are no holes in the system, before an attack happens. One of the most commonly used web application attacks is by insertion of an SQL query from the client side of the application. This attack is called SQL Injection. Since an SQL Injection vulnerability could possibly affect any website or web application that makes use of an SQL-based database, the vulnerability is one of the oldest, most prevalent and most dangerous of web application vulnerabilities. To overcome the SQL injection problems, there is a need to use different security systems. In this paper, we will use 3 different scenarios for testing security systems. Using Penetration testing technique, we will try to find out which is the best solution for protecting sensitive data within the government network of Kosovo.

2017-05-22
Ceccato, Mariano, Nguyen, Cu D., Appelt, Dennis, Briand, Lionel C..  2016.  SOFIA: An Automated Security Oracle for Black-box Testing of SQL-injection Vulnerabilities. Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering. :167–177.

Security testing is a pivotal activity in engineering secure software. It consists of two phases: generating attack inputs to test the system, and assessing whether test executions expose any vulnerabilities. The latter phase is known as the security oracle problem. In this work, we present SOFIA, a Security Oracle for SQL-Injection Vulnerabilities. SOFIA is programming-language and source-code independent, and can be used with various attack generation tools. Moreover, because it does not rely on known attacks for learning, SOFIA is meant to also detect types of SQLi attacks that might be unknown at learning time. The oracle challenge is recast as a one-class classification problem where we learn to characterise legitimate SQL statements to accurately distinguish them from SQLi attack statements. We have carried out an experimental validation on six applications, among which two are large and widely-used. SOFIA was used to detect real SQLi vulnerabilities with inputs generated by three attack generation tools. The obtained results show that SOFIA is computationally fast and achieves a recall rate of 100% (i.e., missing no attacks) with a low false positive rate (0.6%).

2015-05-05
Bozic, J., Wotawa, F..  2014.  Security Testing Based on Attack Patterns. Software Testing, Verification and Validation Workshops (ICSTW), 2014 IEEE Seventh International Conference on. :4-11.

Testing for security related issues is an important task of growing interest due to the vast amount of applications and services available over the internet. In practice testing for security often is performed manually with the consequences of higher costs, and no integration of security testing with today's agile software development processes. In order to bring security testing into practice, many different approaches have been suggested including fuzz testing and model-based testing approaches. Most of these approaches rely on models of the system or the application domain. In this paper we suggest to formalize attack patterns from which test cases can be generated and even executed automatically. Hence, testing for known attacks can be easily integrated into software development processes where automated testing, e.g., for daily builds, is a requirement. The approach makes use of UML state charts. Besides discussing the approach, we illustrate the approach using a case study.