Visible to the public Biblio

Found 2348 results

Filters: Keyword is privacy  [Clear All Filters]
2019-11-12
Mahale, Anusha, B.S., Kariyappa.  2019.  Architecture Analysis and Verification of I3C Protocol. 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA). :930-935.

In VLSI industry the design cycle is categorized into Front End Design and Back End Design. Front End Design flow is from Specifications to functional verification of RTL design. Back End Design is from logic synthesis to fabrication of chip. Handheld devices like Mobile SOC's is an amalgamation of many components like GPU, camera, sensor, display etc. on one single chip. In order to integrate these components protocols are needed. One such protocol in the emerging trend is I3C protocol. I3C is abbreviated as Improved Inter Integrated Circuit developed by Mobile Industry Processor Interface (MIPI) alliance. Most probably used for the interconnection of sensors in Mobile SOC's. The main motivation of adapting the standard is for the increase speed and low pin count in most of the hardware chips. The bus protocol is backward compatible with I2C devices. The paper includes detailed study I3C bus protocol and developing verification environment for the protocol. The test bench environment is written and verified using system Verilog and UVM. The Universal Verification Methodology (UVM) is base class library built using System Verilog which provides the fundamental blocks needed to quickly develop reusable and well-constructed verification components and test environments. The Functional Coverage of around 93.55 % and Code Coverage of around 98.89 % is achieved by verification closure.

Luo, Qiming, Lv, Ang, Hou, Ligang, Wang, Zhongchao.  2018.  Realization of System Verification Platform of IoT Smart Node Chip. 2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems (ICICM). :341-344.

With the development of large scale integrated circuits, the functions of the IoT chips have been increasingly perfect. The verification work has become one of the most important aspects. On the one hand, an efficient verification platform can ensure the correctness of the design. On the other hand, it can shorten the chip design cycle and reduce the design cost. In this paper, based on a transmission protocol of the IoT node, we propose a verification method which combines simulation verification and FPGA-based prototype verification. We also constructed a system verification platform for the IoT smart node chip combining two kinds of verification above. We have simulated and verificatied the related functions of the node chip using this platform successfully. It has a great reference value.

Hu, Yayun, Li, Dongfang.  2019.  Formal Verification Technology for Asynchronous Communication Protocol. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :482-486.

For aerospace FPGA software products, traditional simulation method faces severe challenges to verify product requirements under complicated scenarios. Given the increasing maturity of formal verification technology, this method can significantly improve verification work efficiency and product design quality, by expanding coverage on those "blind spots" in product design which were not easily identified previously. Taking UART communication as an example, this paper proposes several critical points to use formal verification for asynchronous communication protocol. Experiments and practices indicate that formal verification for asynchronous communication protocol can effectively reduce the time required, ensure a complete verification process and more importantly, achieve more accurate and intuitive results.

E.V., Jaideep Varier, V., Prabakar, Balamurugan, Karthigha.  2019.  Design of Generic Verification Procedure for IIC Protocol in UVM. 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA). :1146-1150.

With the growth of technology, designs became more complex and may contain bugs. This makes verification an indispensable part in product development. UVM describe a standard method for verification of designs which is reusable and portable. This paper verifies IIC bus protocol using Universal Verification Methodology. IIC controller is designed in Verilog using Vivado. It have APB interface and its function and code coverage is carried out in Mentor graphic Questasim 10.4e. This work achieved 83.87% code coverage and 91.11% functional coverage.

Xiao, Lili, Xiang, Shuangqing, Zhuy, Huibiao.  2018.  Modeling and Verifying SDN with Multiple Controllers. Proceedings of the 33rd Annual ACM Symposium on Applied Computing. :419-422.

SDN (Software Defined Network) with multiple controllers draws more attention for the increasing scale of the network. The architecture can handle what SDN with single controller is not able to address. In order to understand what this architecture can accomplish and face precisely, we analyze it with formal methods. In this paper, we apply CSP (Communicating Sequential Processes) to model the routing service of SDN under HyperFlow architecture based on OpenFlow protocol. By using model checker PAT (Process Analysis Toolkit), we verify that the models satisfy three properties, covering deadlock freeness, consistency and fault tolerance.

Duan, Zhangbo, Mao, Hongliang, Chen, Zhidong, Bai, Xiaomin, Hu, Kai, Talpin, Jean-Pierre.  2018.  Formal Modeling and Verification of Blockchain System. Proceedings of the 10th International Conference on Computer Modeling and Simulation. :231-235.

As a decentralized and distributed secure storage technology, the notion of blockchain is now widely used for electronic trading in finance, for issuing digital certificates, for copyrights management, and for many other security-critical applications. With applications in so many domains with high-assurance requirements, the formalization and verification of safety and security properties of blockchain becomes essential, and the aim of the present paper. We present the model-based formalization, simulation and verification of a blockchain protocol by using the SDL formalism of Telelogic Tau. We consider the hierarchical and modular SDL model of the blockchain protocol and exercise a methodology to formally simulate and verify it. This way, we show how to effectively increase the security and safety of blockchain in order to meet high assurance requirements demanded by its application domains. Our work also provides effective support for assessing different network consensus algorithms, which are key components in blockchain protocols, as well as on the topology of blockchain networks. In conclusion, our approach contributes to setting up a verification methodology for future blockchain standards in digital trading.

Basin, David, Dreier, Jannik, Hirschi, Lucca, Radomirovic, Sa\v sa, Sasse, Ralf, Stettler, Vincent.  2018.  A Formal Analysis of 5G Authentication. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1383-1396.

Mobile communication networks connect much of the world's population. The security of users' calls, SMSs, and mobile data depends on the guarantees provided by the Authenticated Key Exchange protocols used. For the next-generation network (5G), the 3GPP group has standardized the 5G AKA protocol for this purpose. We provide the first comprehensive formal model of a protocol from the AKA family: 5G AKA. We also extract precise requirements from the 3GPP standards defining 5G and we identify missing security goals. Using the security protocol verification tool Tamarin, we conduct a full, systematic, security evaluation of the model with respect to the 5G security goals. Our automated analysis identifies the minimal security assumptions required for each security goal and we find that some critical security goals are not met, except under additional assumptions missing from the standard. Finally, we make explicit recommendations with provably secure fixes for the attacks and weaknesses we found. 

Pîrlea, George, Sergey, Ilya.  2018.  Mechanising Blockchain Consensus. Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs. :78-90.

We present the first formalisation of a blockchain-based distributed consensus protocol with a proof of its consistency mechanised in an interactive proof assistant. Our development includes a reference mechanisation of the block forest data structure, necessary for implementing provably correct per-node protocol logic. We also define a model of a network, implementing the protocol in the form of a replicated state-transition system. The protocol's executions are modeled via a small-step operational semantics for asynchronous message passing, in which packages can be rearranged or duplicated. In this work, we focus on the notion of global system safety, proving a form of eventual consistency. To do so, we provide a library of theorems about a pure functional implementation of block forests, define an inductive system invariant, and show that, in a quiescent system state, it implies a global agreement on the state of per-node transaction ledgers. Our development is parametric with respect to implementations of several security primitives, such as hash-functions, a notion of a proof object, a Validator Acceptance Function, and a Fork Choice Rule. We precisely characterise the assumptions, made about these components for proving the global system consensus, and discuss their adequacy. All results described in this paper are formalised in Coq.

2019-11-11
Martiny, Karsten, Denker, Grit.  2018.  Expiring Decisions for Stream-based Data Access in a Declarative Privacy Policy Framework. Proceedings of the 2Nd International Workshop on Multimedia Privacy and Security. :71–80.
This paper describes how a privacy policy framework can be extended with timing information to not only decide if requests for data are allowed at a given point in time, but also to decide for how long such permission is granted. Augmenting policy decisions with expiration information eliminates the need to reason about access permissions prior to every individual data access operation. This facilitates the application of privacy policy frameworks to protect multimedia streaming data where repeated re-computations of policy decisions are not a viable option. We show how timing information can be integrated into an existing declarative privacy policy framework. In particular, we discuss how to obtain valid expiration information in the presence of complex sets of policies with potentially interacting policies and varying timing information.
Wang, Xiaoyin, Qin, Xue, Bokaei Hosseini, Mitra, Slavin, Rocky, Breaux, Travis D., Niu, Jianwei.  2018.  GUILeak: Tracing Privacy Policy Claims on User Input Data for Android Applications. 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE). :37–47.
The Android mobile platform supports billions of devices across more than 190 countries around the world. This popularity coupled with user data collection by Android apps has made privacy protection a well-known challenge in the Android ecosystem. In practice, app producers provide privacy policies disclosing what information is collected and processed by the app. However, it is difficult to trace such claims to the corresponding app code to verify whether the implementation is consistent with the policy. Existing approaches for privacy policy alignment focus on information directly accessed through the Android platform (e.g., location and device ID), but are unable to handle user input, a major source of private information. In this paper, we propose a novel approach that automatically detects privacy leaks of user-entered data for a given Android app and determines whether such leakage may violate the app's privacy policy claims. For evaluation, we applied our approach to 120 popular apps from three privacy-relevant app categories: finance, health, and dating. The results show that our approach was able to detect 21 strong violations and 18 weak violations from the studied apps.
Subahi, Alanoud, Theodorakopoulos, George.  2018.  Ensuring Compliance of IoT Devices with Their Privacy Policy Agreement. 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud). :100–107.
In the past few years, Internet of Things (IoT) devices have emerged and spread everywhere. Many researchers have been motivated to study the security issues of IoT devices due to the sensitive information they carry about their owners. Privacy is not simply about encryption and access authorization, but also about what kind of information is transmitted, how it used and to whom it will be shared with. Thus, IoT manufacturers should be compelled to issue Privacy Policy Agreements for their respective devices as well as ensure that the actual behavior of the IoT device complies with the issued privacy policy. In this paper, we implement a test bed for ensuring compliance of Internet of Things data disclosure to the corresponding privacy policy. The fundamental approach used in the test bed is to capture the data traffic between the IoT device and the cloud, between the IoT device and its application on the smart-phone, and between the IoT application and the cloud and analyze those packets for various features. We test 11 IoT manufacturers and the results reveal that half of those IoT manufacturers do not have an adequate privacy policy specifically for their IoT devices. In addition, we prove that the action of two IoT devices does not comply with what they stated in their privacy policy agreement.
Pierce, James, Fox, Sarah, Merrill, Nick, Wong, Richmond, DiSalvo, Carl.  2018.  An Interface Without A User: An Exploratory Design Study of Online Privacy Policies and Digital Legalese. Proceedings of the 2018 Designing Interactive Systems Conference. :1345–1358.
Privacy policies are critical to understanding one's rights on online platforms, yet few users read them. In this pictorial, we approach this as a systemic issue that is part a failure of interaction design. We provided a variety of people with printed packets of privacy policies, aiming to tease out this form's capabilities and limitations as a design interface, to understand people's perception and uses, and to critically imagine pragmatic revisions and creative alternatives to existing privacy policies.
Al-Hasnawi, Abduljaleel, Mohammed, Ihab, Al-Gburi, Ahmed.  2018.  Performance Evaluation of the Policy Enforcement Fog Module for Protecting Privacy of IoT Data. 2018 IEEE International Conference on Electro/Information Technology (EIT). :0951–0957.
The rapid development of the Internet of Things (IoT) results in generating massive amounts of data. Significant portions of these data are sensitive since they reflect (directly or indirectly) peoples' behaviors, interests, lifestyles, etc. Protecting sensitive IoT data from privacy violations is a challenge since these data need to be communicated, processed, analyzed, and stored by public networks, servers, and clouds; most of them are untrusted parties for data owners. We propose a solution for protecting sensitive IoT data called Policy Enforcement Fog Module (PEFM). The major task of the PEFM solution is mandatory enforcement of privacy policies for sensitive IoT data-wherever these data are accessed throughout their entire lifecycle. The key feature of PEFM is its placement within the fog computing infrastructure, which assures that PEFM operates as closely as possible to data sources within the edge. PEFM enforces policies directly for local IoT applications. In contrast, for remote applications, PEFM provides a self-protecting mechanism based on creating and disseminating Active Data Bundles (ADBs). ADBs are software constructs bundling inseparably sensitive data, their privacy policies, and an execution engine able to enforce privacy policies. To prove effectiveness and efficiency of the proposed module, we developed a smart home proof-of-concept scenario. We investigate privacy threats for sensitive IoT data. We run simulation experiments, based on network calculus, for testing performance of the PEFM controls for different network configurations. The results of the simulation show that-even with using from 1 to 5 additional privacy policies for improved data privacy-penalties in terms of execution time and delay are reasonable (approx. 12-15% and 13-19%, respectively). The results also show that PEFM is scalable regarding the number of the real-time constraints for real-time IoT applications.
Martiny, Karsten, Elenius, Daniel, Denker, Grit.  2018.  Protecting Privacy with a Declarative Policy Framework. 2018 IEEE 12th International Conference on Semantic Computing (ICSC). :227–234.

This article describes a privacy policy framework that can represent and reason about complex privacy policies. By using a Common Data Model together with a formal shareability theory, this framework enables the specification of expressive policies in a concise way without burdening the user with technical details of the underlying formalism. We also build a privacy policy decision engine that implements the framework and that has been deployed as the policy decision point in a novel enterprise privacy prototype system. Our policy decision engine supports two main uses: (1) interfacing with user interfaces for the creation, validation, and management of privacy policies; and (2) interfacing with systems that manage data requests and replies by coordinating privacy policy engine decisions and access to (encrypted) databases using various privacy enhancing technologies.

Tesfay, Welderufael B., Hofmann, Peter, Nakamura, Toru, Kiyomoto, Shinsaku, Serna, Jetzabel.  2018.  I Read but Don'T Agree: Privacy Policy Benchmarking Using Machine Learning and the EU GDPR. Companion Proceedings of the The Web Conference 2018. :163–166.
With the continuing growth of the Internet landscape, users share large amount of personal, sometimes, privacy sensitive data. When doing so, often, users have little or no clear knowledge about what service providers do with the trails of personal data they leave on the Internet. While regulations impose rather strict requirements that service providers should abide by, the defacto approach seems to be communicating data processing practices through privacy policies. However, privacy policies are long and complex for users to read and understand, thus failing their mere objective of informing users about the promised data processing behaviors of service providers. To address this pertinent issue, we propose a machine learning based approach to summarize the rather long privacy policy into short and condensed notes following a risk-based approach and using the European Union (EU) General Data Protection Regulation (GDPR) aspects as assessment criteria. The results are promising and indicate that our tool can summarize lengthy privacy policies in a short period of time, thus supporting users to take informed decisions regarding their information disclosure behaviors.
Kunihiro, Noboru, Lu, Wen-jie, Nishide, Takashi, Sakuma, Jun.  2018.  Outsourced Private Function Evaluation with Privacy Policy Enforcement. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :412–423.
We propose a novel framework for outsourced private function evaluation with privacy policy enforcement (OPFE-PPE). Suppose an evaluator evaluates a function with private data contributed by a data contributor, and a client obtains the result of the evaluation. OPFE-PPE enables a data contributor to enforce two different kinds of privacy policies to the process of function evaluation: evaluator policy and client policy. An evaluator policy restricts entities that can conduct function evaluation with the data. A client policy restricts entities that can obtain the result of function evaluation. We demonstrate our construction with three applications: personalized medication, genetic epidemiology, and prediction by machine learning. Experimental results show that the overhead caused by enforcing the two privacy policies is less than 10% compared to function evaluation by homomorphic encryption without any privacy policy enforcement.
2019-11-04
Li, Teng, Ma, Jianfeng, Pei, Qingqi, Shen, Yulong, Sun, Cong.  2018.  Anomalies Detection of Routers Based on Multiple Information Learning. 2018 International Conference on Networking and Network Applications (NaNA). :206-211.

Routers are important devices in the networks that carry the burden of transmitting information among the communication devices on the Internet. If a malicious adversary wants to intercept the information or paralyze the network, it can directly attack the routers and then achieve the suspicious goals. Thus, preventing router security is of great importance. However, router systems are notoriously difficult to understand or diagnose for their inaccessibility and heterogeneity. The common way of gaining access to the router system and detecting the anomaly behaviors is to inspect the router syslogs or monitor the packets of information flowing to the routers. These approaches just diagnose the routers from one aspect but do not consider them from multiple views. In this paper, we propose an approach to detect the anomalies and faults of the routers with multiple information learning. We try to use the routers' information not from the developer's view but from the user' s view, which does not need any expert knowledge. First, we do the offline learning to transform the benign or corrupted user actions into the syslogs. Then, we try to decide whether the input routers' conditions are poor or not with clustering. During the detection phase, we use the distance between the event and the cluster to decide if it is the anomaly event and we can provide the corresponding solutions. We have applied our approach in a university network which contains Cisco, Huawei and Dlink routers for three months. We aligned our experiment with former work as a baseline for comparison. Our approach can gain 89.6% accuracy in detecting the attacks which is 5.1% higher than the former work. The results show that our approach performs in limited time as well as memory usages and has high detection and low false positives.

2019-10-30
Borgolte, Kevin, Hao, Shuang, Fiebig, Tobias, Vigna, Giovanni.  2018.  Enumerating Active IPv6 Hosts for Large-Scale Security Scans via DNSSEC-Signed Reverse Zones. 2018 IEEE Symposium on Security and Privacy (SP). :770-784.

Security research has made extensive use of exhaustive Internet-wide scans over the recent years, as they can provide significant insights into the overall state of security of the Internet, and ZMap made scanning the entire IPv4 address space practical. However, the IPv4 address space is exhausted, and a switch to IPv6, the only accepted long-term solution, is inevitable. In turn, to better understand the security of devices connected to the Internet, including in particular Internet of Things devices, it is imperative to include IPv6 addresses in security evaluations and scans. Unfortunately, it is practically infeasible to iterate through the entire IPv6 address space, as it is 2ˆ96 times larger than the IPv4 address space. Therefore, enumeration of active hosts prior to scanning is necessary. Without it, we will be unable to investigate the overall security of Internet-connected devices in the future. In this paper, we introduce a novel technique to enumerate an active part of the IPv6 address space by walking DNSSEC-signed IPv6 reverse zones. Subsequently, by scanning the enumerated addresses, we uncover significant security problems: the exposure of sensitive data, and incorrectly controlled access to hosts, such as access to routing infrastructure via administrative interfaces, all of which were accessible via IPv6. Furthermore, from our analysis of the differences between accessing dual-stack hosts via IPv6 and IPv4, we hypothesize that the root cause is that machines automatically and by default take on globally routable IPv6 addresses. This is a practice that the affected system administrators appear unaware of, as the respective services are almost always properly protected from unauthorized access via IPv4. Our findings indicate (i) that enumerating active IPv6 hosts is practical without a preferential network position contrary to common belief, (ii) that the security of active IPv6 hosts is currently still lagging behind the security state of IPv4 hosts, and (iii) that unintended IPv6 connectivity is a major security issue for unaware system administrators.

2019-10-28
Blanquer, Ignacio, Meira, Wagner.  2018.  EUBra-BIGSEA, A Cloud-Centric Big Data Scientific Research Platform. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :47–48.
This paper describes the achievements of project EUBra-BIGSEA, which has delivered programming models and data analytics tools for the development of distributed Big Data applications. As framework components, multiple data models are supported (e.g. data streams, multidimensional data, etc.) and efficient mechanisms to ensure privacy and security, on top of a QoS-aware layer for the smart and rapid provisioning of resources in a cloud-based environment.
2019-10-23
Ali, Abdullah Ahmed, Zamri Murah, Mohd.  2018.  Security Assessment of Libyan Government Websites. 2018 Cyber Resilience Conference (CRC). :1-4.

Many governments organizations in Libya have started transferring traditional government services to e-government. These e-services will benefit a wide range of public. However, deployment of e-government bring many new security issues. Attackers would take advantages of vulnerabilities in these e-services and would conduct cyber attacks that would result in data loss, services interruptions, privacy loss, financial loss, and other significant loss. The number of vulnerabilities in e-services have increase due to the complexity of the e-services system, a lack of secure programming practices, miss-configuration of systems and web applications vulnerabilities, or not staying up-to-date with security patches. Unfortunately, there is a lack of study being done to assess the current security level of Libyan government websites. Therefore, this study aims to assess the current security of 16 Libyan government websites using penetration testing framework. In this assessment, no exploits were committed or tried on the websites. In penetration testing framework (pen test), there are four main phases: Reconnaissance, Scanning, Enumeration, Vulnerability Assessment and, SSL encryption evaluation. The aim of a security assessment is to discover vulnerabilities that could be exploited by attackers. We also conducted a Content Analysis phase for all websites. In this phase, we searched for security and privacy policies implementation information on the government websites. The aim is to determine whether the websites are aware of current accepted standard for security and privacy. From our security assessment results of 16 Libyan government websites, we compared the websites based on the number of vulnerabilities found and the level of security policies. We only found 9 websites with high and medium vulnerabilities. Many of these vulnerabilities are due to outdated software and systems, miss-configuration of systems and not applying the latest security patches. These vulnerabilities could be used by cyber hackers to attack the systems and caused damages to the systems. Also, we found 5 websites didn't implement any SSL encryption for data transactions. Lastly, only 2 websites have published security and privacy policies on their websites. This seems to indicate that these websites were not concerned with current standard in security and privacy. Finally, we classify the 16 websites into 4 safety categories: highly unsafe, unsafe, somewhat unsafe and safe. We found only 1 website with a highly unsafe ranking. Based on our finding, we concluded that the security level of the Libyan government websites are adequate, but can be further improved. However, immediate actions need to be taken to mitigate possible cyber attacks by fixing the vulnerabilities and implementing SSL encryption. Also, the websites need to publish their security and privacy policy so the users could trust their websites.

2019-10-15
Pejo, Balazs, Tang, Qiang, Biczók, Gergely.  2018.  The Price of Privacy in Collaborative Learning. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :2261–2263.

Machine learning algorithms have reached mainstream status and are widely deployed in many applications. The accuracy of such algorithms depends significantly on the size of the underlying training dataset; in reality a small or medium sized organization often does not have enough data to train a reasonably accurate model. For such organizations, a realistic solution is to train machine learning models based on a joint dataset (which is a union of the individual ones). Unfortunately, privacy concerns prevent them from straightforwardly doing so. While a number of privacy-preserving solutions exist for collaborating organizations to securely aggregate the parameters in the process of training the models, we are not aware of any work that provides a rational framework for the participants to precisely balance the privacy loss and accuracy gain in their collaboration. In this paper, we model the collaborative training process as a two-player game where each player aims to achieve higher accuracy while preserving the privacy of its own dataset. We introduce the notion of Price of Privacy, a novel approach for measuring the impact of privacy protection on the accuracy in the proposed framework. Furthermore, we develop a game-theoretical model for different player types, and then either find or prove the existence of a Nash Equilibrium with regard to the strength of privacy protection for each player.

2019-10-14
Guo, Y., Chen, L., Shi, G..  2018.  Function-Oriented Programming: A New Class of Code Reuse Attack in C Applications. 2018 IEEE Conference on Communications and Network Security (CNS). :1–9.

Control-hijacking attacks include code injection attacks and code reuse attacks. In recent years, with the emergence of the defense mechanism data-execution prevention(DEP), code reuse attacks have become mainstream, such as return-oriented programming(ROP), Jump-Oriented Programming(JOP), and Counterfeit Object-oriented Programming(COOP). And a series of defensive measures have been proposed, such as DEP, address space layout randomization (ASLR), coarse-grained Control-Flow Integrity(CFI) and fine-grained CFI. In this paper, we propose a new attack called function-oriented programming(FOP) to construct malicious program behavior. FOP takes advantage of the existing function of the C program to induce attack. We propose concrete algorithms for FOP gadgets and build a tool to identify FOP gadgets. FOP can successfully bypass coarse-grained CFI, and FOP also can bypass some existing fine-grained CFI technologies, such as shadow stack technology. We show a real-world attack for proftpd1.3.0 server in the Linux x64 environment. We believe that the FOP attack will encourage people to come up with more effective defense measures.

2019-10-08
Rahman, M. S., Hossam-E-Haider, M..  2019.  Quantum IoT: A Quantum Approach in IoT Security Maintenance. 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST). :269–272.

Securing Internet of things is a major concern as it deals with data that are personal, needed to be reliable, can direct and manipulate device decisions in a harmful way. Also regarding data generation process is heterogeneous, data being immense in volume, complex management. Quantum Computing and Internet of Things (IoT) coined as Quantum IoT defines a concept of greater security design which harness the virtue of quantum mechanics laws in Internet of Things (IoT) security management. Also it ensures secured data storage, processing, communication, data dynamics. In this paper, an IoT security infrastructure is introduced which is a hybrid one, with an extra layer, which ensures quantum state. This state prevents any sort of harmful actions from the eavesdroppers in the communication channel and cyber side, by maintaining its state, protecting the key by quantum cryptography BB84 protocol. An adapted version is introduced specific to this IoT scenario. A classical cryptography system `One-Time pad (OTP)' is used in the hybrid management. The novelty of this paper lies with the integration of classical and quantum communication for Internet of Things (IoT) security.

2019-10-02
Wang, S., Zhu, S., Zhang, Y..  2018.  Blockchain-Based Mutual Authentication Security Protocol for Distributed RFID Systems. 2018 IEEE Symposium on Computers and Communications (ISCC). :00074–00077.

Since radio frequency identification (RFID) technology has been used in various scenarios such as supply chain, access control system and credit card, tremendous efforts have been made to improve the authentication between tags and readers to prevent potential attacks. Though effective in certain circumstances, these existing methods usually require a server to maintain a database of identity related information for every tag, which makes the system vulnerable to the SQL injection attack and not suitable for distributed environment. To address these problems, we now propose a novel blockchain-based mutual authentication security protocol. In this new scheme, there is no need for the trusted third parties to provide security and privacy for the system. Authentication is executed as an unmodifiable transaction based on blockchain rather than database, which applies to distributed RFID systems with high security demand and relatively low real-time requirement. Analysis shows that our protocol is logically correct and can prevent multiple attacks.

Cherneva, V., Trahan, J..  2019.  A Secure and Efficient Parallel-Dependency RFID Grouping-Proof Protocol. 2019 IEEE International Conference on RFID (RFID). :1–8.

In this time of ubiquitous computing and the evolution of the Internet of Things (IoT), the deployment and development of Radio Frequency Identification (RFID) is becoming more extensive. Proving the simultaneous presence of a group of RFID tagged objects is a practical need in many application areas within the IoT domain. Security, privacy, and efficiency are central issues when designing such a grouping-proof protocol. This work is motivated by our serial-dependent and Sundaresan et al.'s grouping-proof protocols. In this paper, we propose a light, improved offline protocol: parallel-dependency grouping-proof protocol (PDGPP). The protocol focuses on security, privacy, and efficiency. PDGPP tackles the challenges of including robust privacy mechanisms and accommodates missing tags. It is scalable and complies with EPC C1G2.