Chen, Shengjian.
2022.
Trustworthy Internet Based on Generalized Blockchain. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :5–12.
It is the key to the Internet's expansion of social and economic functions by ensuring the credibility of online users' identities and behaviors while taking into account privacy protection. Public Key Infrastructure (PKI) and blockchain technology have provided ways to achieve credibility from different perspectives. Based on these two technologies, we attempt to generalize people's offline activities to online ones with our proposed model, Atom and Molecule. We then present the strict definition of trustworthy system and the trustworthy Internet. The definition of Generalized Blockchain and its practical implementation are provided as well.
Patil, Vishwas T., Shyamasundar, R.K..
2022.
Evolving Role of PKI in Facilitating Trust. 2022 IEEE International Conference on Public Key Infrastructure and its Applications (PKIA). :1–7.
A digital certificate is by far the most widely used artifact to establish secure electronic communication over the Internet. It certifies to its user that the public key encapsulated in it is associated with the subject of the certificate. A Public Key Infrastructure (PKI) is responsible to create, store, distribute, and revoke digital certificates. To establish a secure communication channel two unfamiliar entities rely on a common certificate issuer (a part of PKI) that vouches for both entities' certificates - thus authenticating each other via public keys listed in each other's certificates. Therefore, PKIs act as a trusted third party for two previously unfamiliar entities. Certificates are static data structures, their revocation status must be checked before usage; this step inadvertently involves a PKI for every secure channel establishment - leading to privacy violations of relying parties. As PKIs act as trust anchors for their subjects, any inadvertent event or malfeasance in PKI setup breaches the trust relationship leading to identity theft. Alternative PKI trust models, like PGP and SPKI, have been proposed but with limited deployment. With several retrofitting amendments to the prevalent X.509 standard, the standard has been serving its core objective of entity authentication but with modern requirements of contextual authentication, it is falling short to accommodate the evolving requirements. With the advent of blockchain as a trust management protocol, the time has come to rethink flexible alternatives to PKI core functionality; keeping in mind the modern-day requirements of contextual authentication-cum-authorization, weighted trust anchors, privacy-preservation, usability, and cost-efficient key management. In this paper, we assess this technology's complementary role in modern-day evolving security requirements. We discuss the feasibility of re-engineering PKIs with the help of blockchains, and identity networks.
Kumar, Abhinav, Tourani, Reza, Vij, Mona, Srikanteswara, Srikathyayani.
2022.
SCLERA: A Framework for Privacy-Preserving MLaaS at the Pervasive Edge. 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :175–180.
The increasing data generation rate and the proliferation of deep learning applications have led to the development of machine learning-as-a-service (MLaaS) platforms by major Cloud providers. The existing MLaaS platforms, however, fall short in protecting the clients’ private data. Recent distributed MLaaS architectures such as federated learning have also shown to be vulnerable against a range of privacy attacks. Such vulnerabilities motivated the development of privacy-preserving MLaaS techniques, which often use complex cryptographic prim-itives. Such approaches, however, demand abundant computing resources, which undermine the low-latency nature of evolving applications such as autonomous driving.To address these challenges, we propose SCLERA–an efficient MLaaS framework that utilizes trusted execution environment for secure execution of clients’ workloads. SCLERA features a set of optimization techniques to reduce the computational complexity of the offloaded services and achieve low-latency inference. We assessed SCLERA’s efficacy using image/video analytic use cases such as scene detection. Our results show that SCLERA achieves up to 23× speed-up when compared to the baseline secure model execution.
Dong, Siyuan, Fan, Zhong.
2022.
Cybersecurity Threats Analysis and Management for Peer-to-Peer Energy Trading. 2022 IEEE 7th International Energy Conference (ENERGYCON). :1–6.
The distributed energy resources (DERs) have significantly stimulated the development of decentralized energy system and changed the way how the energy system works. In recent years, peer-to-peer (P2P) trading has drawn attention as a promising alternative for prosumers to engage with the energy market more actively, particular by using the emerging blockchain technology. Blockchain can securely hold critical information and store data in blocks linking with chain, providing a desired platform for the P2P energy trading. This paper provides a detailed description of blockchain-enabled P2P energy trading, its essential components, and how it can be implemented within the local energy market An analysis of potential threats during blockchain-enabled P2P energy trading is also performed, which subsequently results in a list of operation and privacy requirements suggested to be implemented in the local energy market.
Samuel, Henry D, Kumar, M Santhanam, Aishwarya, R., Mathivanan, G..
2022.
Automation Detection of Malware and Stenographical Content using Machine Learning. 2022 6th International Conference on Computing Methodologies and Communication (ICCMC). :889–894.
In recent times, the occurrence of malware attacks are increasing at an unprecedented rate. Particularly, the image-based malware attacks are spreading worldwide and many people get harmful malware-based images through the technique called steganography. In the existing system, only open malware and files from the internet can be identified. However, the image-based malware cannot be identified and detected. As a result, so many phishers make use of this technique and exploit the target. Social media platforms would be totally harmful to the users. To avoid these difficulties, Machine learning can be implemented to find the steganographic malware images (contents). The proposed methodology performs an automatic detection of malware and steganographic content by using Machine Learning. Steganography is used to hide messages from apparently innocuous media (e.g., images), and steganalysis is the approach used for detecting this malware. This research work proposes a machine learning (ML) approach to perform steganalysis. In the existing system, only open malware and files from the internet are identified but in the recent times many people get harmful malware-based images through the technique called steganography. Social media platforms would be totally harmful to the users. To avoid these difficulties, the proposed Machine learning has been developed to appropriately detect the steganographic malware images (contents). Father, the steganalysis method using machine learning has been developed for performing logistic classification. By using this, the users can avoid sharing the malware images in social media platforms like WhatsApp, Facebook without downloading it. It can be also used in all the photo-sharing sites such as google photos.
Rout, Sonali, Mohapatra, Ramesh Kumar.
2022.
Hiding Sensitive Information in Surveillance Video without Affecting Nefarious Activity Detection. 2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP). :1–6.
Protection of private and sensitive information is the most alarming issue for security providers in surveillance videos. So to provide privacy as well as to enhance secrecy in surveillance video without affecting its efficiency in detection of violent activities is a challenging task. Here a steganography based algorithm has been proposed which hides private information inside the surveillance video without affecting its accuracy in criminal activity detection. Preprocessing of the surveillance video has been performed using Tunable Q-factor Wavelet Transform (TQWT), secret data has been hidden using Discrete Wavelet Transform (DWT) and after adding payload to the surveillance video, detection of criminal activities has been conducted with maintaining same accuracy as original surveillance video. UCF-crime dataset has been used to validate the proposed framework. Feature extraction is performed and after feature selection it has been trained to Temporal Convolutional Network (TCN) for detection. Performance measure has been compared to the state-of-the-art methods which shows that application of steganography does not affect the detection rate while preserving the perceptual quality of the surveillance video.
ISSN: 2640-5768
Sultana, Habiba, Kamal, A H M.
2022.
An Edge Detection Based Reversible Data Hiding Scheme. 2022 IEEE Delhi Section Conference (DELCON). :1–6.
Edge detection based embedding techniques are famous for data security and image quality preservation. These techniques use diverse edge detectors to classify edge and non-edge pixels in an image and then implant secrets in one or both of these classes. Image with conceived data is called stego image. It is noticeable that none of such researches tries to reform the original image from the stego one. Rather, they devote their concentration to extract the hidden message only. This research presents a solution to the raised reversibility problem. Like the others, our research, first, applies an edge detector e.g., canny, in a cover image. The scheme next collects \$n\$-LSBs of each of edge pixels and finally, concatenates them with encrypted message stream. This method applies a lossless compression algorithm to that processed stream. Compression factor is taken such a way that the length of compressed stream does not exceed the length of collected LSBs. The compressed message stream is then implanted only in the edge pixels by \$n\$-LSB substitution method. As the scheme does not destroy the originality of non-edge pixels, it presents better stego quality. By incorporation the mechanisms of encryption, concatenation, compression and \$n\$-LSB, the method has enriched the security of implanted data. The research shows its effectiveness while implanting a small sized message.
Feng, Jinliu, Wang, Yaofei, Chen, Kejiang, Zhang, Weiming, Yu, Nenghai.
2022.
An Effective Steganalysis for Robust Steganography with Repetitive JPEG Compression. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3084–3088.
With the development of social networks, traditional covert communication requires more consideration of lossy processes of Social Network Platforms (SNPs), which is called robust steganography. Since JPEG compression is a universal processing of SNPs, a method using repeated JPEG compression to fit transport channel matching is recently proposed and shows strong compression-resist performance. However, the repeated JPEG compression will inevitably introduce other artifacts into the stego image. Using only traditional steganalysis methods does not work well towards such robust steganography under low payload. In this paper, we propose a simple and effective method to detect the mentioned steganography by chasing both steganographic perturbations as well as continuous compression artifacts. We introduce compression-forensic features as a complement to steganalysis features, and then use the ensemble classifier for detection. Experiments demonstrate that this method owns a similar and better performance with respect to both traditional and neural-network-based steganalysis.
ISSN: 2379-190X
Sadek, Mennatallah M., Khalifa, Amal, Khafga, Doaa.
2022.
An enhanced Skin-tone Block-map Image Steganography using Integer Wavelet Transforms. 2022 5th International Conference on Computing and Informatics (ICCI). :378–384.
Steganography is the technique of hiding a confidential message in an ordinary message where the extraction of embedded information is done at its destination. Among the different carrier files formats; digital images are the most popular. This paper presents a Wavelet-based method for hiding secret information in digital images where skin areas are identified and used as a region of interest. The work presented here is an extension of a method published earlier by the authors that utilized a rule-based approach to detect skin regions. The proposed method, proposed embedding the secret data into the integer Wavelet coefficients of the approximation sub-band of the cover image. When compared to the original technique, experimental results showed a lower error percentage between skin maps detected before the embedding and during the extraction processes. This eventually increased the similarity between the original and the retrieved secret image.
Fu, Shichong, Li, Xiaoling, Zhao, Yao.
2022.
Improved Steganography Based on Referential Cover and Non-symmetric Embedding. 2022 IEEE 5th International Conference on Electronics Technology (ICET). :1202–1206.
Minimizing embedding impact model of steganography has good performance for steganalysis detection. By using effective distortion cost function and coding method, steganography under this model becomes the mainstream embedding framework recently. In this paper, to improve the anti-detection performance, a new steganography optimization model by constructing a reference cover is proposed. First, a reference cover is construed by performing a filtering operation on the cover image. Then, by minimizing the residual between the reference cover and the original cover, the optimization function is formulated considering the effect of different modification directions. With correcting the distortion cost of +1 and \_1 modification operations, the stego image obtained by the proposed method is more consistent with the natural image. Finally, by applying the proposed framework to the cost function of the well-known HILL embedding, experimental results show that the anti-detection performance of the proposed method is better than the traditional method.
ISSN: 2768-6515
Liu, Qin, Yang, Jiamin, Jiang, Hongbo, Wu, Jie, Peng, Tao, Wang, Tian, Wang, Guojun.
2022.
When Deep Learning Meets Steganography: Protecting Inference Privacy in the Dark. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications. :590–599.
While cloud-based deep learning benefits for high-accuracy inference, it leads to potential privacy risks when exposing sensitive data to untrusted servers. In this paper, we work on exploring the feasibility of steganography in preserving inference privacy. Specifically, we devise GHOST and GHOST+, two private inference solutions employing steganography to make sensitive images invisible in the inference phase. Motivated by the fact that deep neural networks (DNNs) are inherently vulnerable to adversarial attacks, our main idea is turning this vulnerability into the weapon for data privacy, enabling the DNN to misclassify a stego image into the class of the sensitive image hidden in it. The main difference is that GHOST retrains the DNN into a poisoned network to learn the hidden features of sensitive images, but GHOST+ leverages a generative adversarial network (GAN) to produce adversarial perturbations without altering the DNN. For enhanced privacy and a better computation-communication trade-off, both solutions adopt the edge-cloud collaborative framework. Compared with the previous solutions, this is the first work that successfully integrates steganography and the nature of DNNs to achieve private inference while ensuring high accuracy. Extensive experiments validate that steganography has excellent ability in accuracy-aware privacy protection of deep learning.
ISSN: 2641-9874
Yahia, Fatima F. M., Abushaala, Ahmed M..
2022.
Cryptography using Affine Hill Cipher Combining with Hybrid Edge Detection (Canny-LoG) and LSB for Data Hiding. 2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA). :379–384.
In our time the rapid growth of internet and digital communications has been required to be protected from illegal users. It is important to secure the information transmitted between the sender and receiver over the communication channels such as the internet, since it is a public environment. Cryptography and Steganography are the most popular techniques used for sending data in secrete way. In this paper, we are proposing a new algorithm that combines both cryptography and steganography in order to increase the level of data security against attackers. In cryptography, we are using affine hill cipher method; while in steganography we are using Hybrid edge detection with LSB to hide the message. Our paper shows how we can use image edges to hide text message. Grayscale images are used for our experiments and a comparison is developed based on using different edge detection operators such as (canny-LoG ) and (Canny-Sobel). Their performance is measured using PSNR (Peak Signal to Noise ratio), MSE (Mean Squared Error) and EC (Embedding Capacity). The results indicate that, using hybrid edge detection (canny- LoG) with LSB for hiding data could provide high embedding capacity than using hybrid edge detection (canny- Sobel) with LSB. We could prove that hiding in the image edge area could preserve the imperceptibility of the Stego-image. This paper has also proved that the secrete message was extracted successfully without any distortion.
Kumar, Manish, Soni, Aman, Shekhawat, Ajay Raj Singh, Rawat, Akash.
2022.
Enhanced Digital Image and Text Data Security Using Hybrid Model of LSB Steganography and AES Cryptography Technique. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :1453–1457.
In the present innovation, for the trading of information, the internet is the most well-known and significant medium. With the progression of the web and data innovation, computerized media has become perhaps the most famous and notable data transfer tools. This advanced information incorporates text, pictures, sound, video etc moved over the public organization. The majority of these advanced media appear as pictures and are a significant part in different applications, for example, chat, talk, news, website, web-based business, email, and digital books. The content is still facing various challenges in which including the issues of protection of copyright, modification, authentication. Cryptography, steganography, embedding techniques is widely used to secure the digital data. In this present the hybrid model of LSB steganography and Advanced Encryption Standard (AES) cryptography techniques to enhanced the security of the digital image and text that is undeniably challenging to break by the unapproved person. The security level of the secret information is estimated in the term of MSE and PSNR for better hiding required the low MSE and high PSNR values.
Kotkar, Aditya, Khadapkar, Shreyas, Gupta, Aniket, Jangale, Smita.
2022.
Multiple layered Security using combination of Cryptography with Rotational, Flipping Steganography and Message Authentication. 2022 IEEE International Conference on Data Science and Information System (ICDSIS). :1–5.
Data or information are being transferred at an enormous pace and hence protecting and securing this transmission of data are very important and have been very challenging. Cryptography and Steganography are the most broadly used techniques for safeguarding data by encryption of data and hiding the existence of data. A multi-layered secure transmission can be achieved by combining Cryptography with Steganography and by adding message authentication ensuring the confidentiality of the message. Different approach towards Steganography implementation is proposed using rotations and flips to prevent detection of encoded messages. Compression of multimedia files is set up for increasing the speed of encoding and consuming less storage space. The HMAC (Hash-based Authentication Code) algorithm is chosen for message authentication and integrity. The performance of the proposed Steganography methods is concluded using Histogram comparative analysis. Simulations have been performed to back the reliability of the proposed method.
Nie, Chenyang, Quinan, Paulo Gustavo, Traore, Issa, Woungang, Isaac.
2022.
Intrusion Detection using a Graphical Fingerprint Model. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :806–813.
The Activity and Event Network (AEN) graph is a new framework that allows modeling and detecting intrusions by capturing ongoing security-relevant activity and events occurring at a given organization using a large time-varying graph model. The graph is generated by processing various network security logs, such as network packets, system logs, and intrusion detection alerts. In this paper, we show how known attack methods can be captured generically using attack fingerprints based on the AEN graph. The fingerprints are constructed by identifying attack idiosyncrasies under the form of subgraphs that represent indicators of compromise (IOes), and then encoded using Property Graph Query Language (PGQL) queries. Among the many attack types, three main categories are implemented as a proof of concept in this paper: scanning, denial of service (DoS), and authentication breaches; each category contains its common variations. The experimental evaluation of the fingerprints was carried using a combination of intrusion detection datasets and yielded very encouraging results.
Kiruba, B., Saravanan, V., Vasanth, T., Yogeshwar, B.K..
2022.
OWASP Attack Prevention. 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC). :1671–1675.
The advancements in technology can be seen in recent years, and people have been adopting the emerging technologies. Though people rely upon these advancements, many loopholes can be seen if you take a particular field, and attackers are thirsty to steal personal data. There has been an increasing number of cyber threats and breaches happening worldwide, primarily for fun or for ransoms. Web servers and sites of the users are being compromised, and they are unaware of the vulnerabilities. Vulnerabilities include OWASP's top vulnerabilities like SQL injection, Cross-site scripting, and so on. To overcome the vulnerabilities and protect the site from getting down, the proposed work includes the implementation of a Web Application Firewall focused on the Application layer of the OSI Model; the product protects the target web applications from the Common OWASP security vulnerabilities. The Application starts analyzing the incoming and outgoing requests generated from the traffic through the pre-built Application Programming Interface. It compares the request and parameter with the algorithm, which has a set of pre-built regex patterns. The outcome of the product is to detect and reject general OWASP security vulnerabilities, helping to secure the user's business and prevent unauthorized access to sensitive data, respectively.
Sultana, Fozia, Arain, Qasim Ali, Soothar, Perman, Jokhio, Imran Ali, Zubedi, Asma.
2022.
A Spoofing Proof Stateless Session Architecture. 2022 2nd International Conference of Smart Systems and Emerging Technologies (SMARTTECH). :80–84.
To restrict unauthorized access to the data of the website. Most of the web-based systems nowadays require users to verify themselves before accessing the website is authentic information. In terms of security, it is very important to take different security measures for the protection of the authentic data of the website. However, most of the authentication systems which are used on the web today have several security flaws. This document is based on the security of the previous schemes. Compared to the previous approaches, this “spoofed proof stateless session model” method offers superior security assurance in a scenario in which an attacker has unauthorized access to the data of the website. The various protocol models are being developed and implemented on the web to analyze the performance. The aim was to secure the authentic database backups of the website and prevent them from SQL injection attacks by using the read-only properties for the database. This limits potential harm and provides users with reasonable security safeguards when an attacker has an unauthorized read-only access to the website's authentic database. This scheme provides robustness to the disclosure of authentic databases. Proven experimental results show the overheads due to the modified authentication method and the insecure model.
Praveen, Sivakami, Dcouth, Alysha, Mahesh, A S.
2022.
NoSQL Injection Detection Using Supervised Text Classification. 2022 2nd International Conference on Intelligent Technologies (CONIT). :1–5.
For a long time, SQL injection has been considered one of the most serious security threats. NoSQL databases are becoming increasingly popular as big data and cloud computing technologies progress. NoSQL injection attacks are designed to take advantage of applications that employ NoSQL databases. NoSQL injections can be particularly harmful because they allow unrestricted code execution. In this paper we use supervised learning and natural language processing to construct a model to detect NoSQL injections. Our model is designed to work with MongoDB, CouchDB, CassandraDB, and Couchbase queries. Our model has achieved an F1 score of 0.95 as established by 10-fold cross validation.
Ashlam, Ahmed Abadulla, Badii, Atta, Stahl, Frederic.
2022.
A Novel Approach Exploiting Machine Learning to Detect SQLi Attacks. 2022 5th International Conference on Advanced Systems and Emergent Technologies (IC\_ASET). :513–517.
The increasing use of Information Technology applications in the distributed environment is increasing security exploits. Information about vulnerabilities is also available on the open web in an unstructured format that developers can take advantage of to fix vulnerabilities in their IT applications. SQL injection (SQLi) attacks are frequently launched with the objective of exfiltration of data typically through targeting the back-end server organisations to compromise their customer databases. There have been a number of high profile attacks against large enterprises in recent years. With the ever-increasing growth of online trading, it is possible to see how SQLi attacks can continue to be one of the leading routes for cyber-attacks in the future, as indicated by findings reported in OWASP. Various machine learning and deep learning algorithms have been applied to detect and prevent these attacks. However, such preventive attempts have not limited the incidence of cyber-attacks and the resulting compromised database as reported by (CVE) repository. In this paper, the potential of using data mining approaches is pursued in order to enhance the efficacy of SQL injection safeguarding measures by reducing the false-positive rates in SQLi detection. The proposed approach uses CountVectorizer to extract features and then apply various supervised machine-learning models to automate the classification of SQLi. The model that returns the highest accuracy has been chosen among available models. Also a new model has been created PALOSDM (Performance analysis and Iterative optimisation of the SQLI Detection Model) for reducing false-positive rate and false-negative rate. The detection rate accuracy has also been improved significantly from a baseline of 94% up to 99%.
Zheng, Jiahui, Li, Junjian, Li, Chao, Li, Ran.
2022.
A SQL Blind Injection Method Based on Gated Recurrent Neural Network. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :519–525.
Security is undoubtedly the most serious problem for Web applications, and SQL injection (SQLi) attacks are one of the most damaging. The detection of SQL blind injection vulnerability is very important, but unfortunately, it is not fast enough. This is because time-based SQL blind injection lacks web page feedback, so the delay function can only be set artificially to judge whether the injection is successful by observing the response time of the page. However, brute force cracking and binary search methods used in injection require more web requests, resulting in a long time to obtain database information in SQL blind injection. In this paper, a gated recurrent neural network-based SQL blind injection technology is proposed to generate the predictive characters in SQL blind injection. By using the neural language model based on deep learning and character sequence prediction, the method proposed in this paper can learn the regularity of common database information, so that it can predict the next possible character according to the currently obtained database information, and sort it according to probability. In this paper, the training model is evaluated, and experiments are carried out on the shooting range to compare the method used in this paper with sqlmap (the most advanced sqli test automation tool at present). The experimental results show that the method used in this paper is more effective and significant than sqlmap in time-based SQL blind injection. It can obtain the database information of the target site through fewer requests, and run faster.
Roobini, M.S., Srividhya, S.R., Sugnaya, Vennela, Kannekanti, Nikhila, Guntumadugu.
2022.
Detection of SQL Injection Attack Using Adaptive Deep Forest. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). :1–6.
Injection attack is one of the best 10 security dangers declared by OWASP. SQL infusion is one of the main types of attack. In light of their assorted and quick nature, SQL injection can detrimentally affect the line, prompting broken and public data on the site. Therefore, this article presents a profound woodland-based technique for recognizing complex SQL attacks. Research shows that the methodology we use resolves the issue of expanding and debasing the first condition of the woodland. We are currently presenting the AdaBoost profound timberland-based calculation, which utilizes a blunder level to refresh the heaviness of everything in the classification. At the end of the day, various loads are given during the studio as per the effect of the outcomes on various things. Our model can change the size of the tree quickly and take care of numerous issues to stay away from issues. The aftereffects of the review show that the proposed technique performs better compared to the old machine preparing strategy and progressed preparing technique.
Lu, Dongzhe, Fei, Jinlong, Liu, Long, Li, Zecun.
2022.
A GAN-based Method for Generating SQL Injection Attack Samples. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:1827–1833.
Due to the simplicity of implementation and high threat level, SQL injection attacks are one of the oldest, most prevalent, and most destructive types of security attacks on Web-based information systems. With the continuous development and maturity of artificial intelligence technology, it has been a general trend to use AI technology to detect SQL injection. The selection of the sample set is the deciding factor of whether AI algorithms can achieve good results, but dataset with tagged specific category labels are difficult to obtain. This paper focuses on data augmentation to learn similar feature representations from the original data to improve the accuracy of classification models. In this paper, deep convolutional generative adversarial networks combined with genetic algorithms are applied to the field of Web vulnerability attacks, aiming to solve the problem of insufficient number of SQL injection samples. This method is also expected to be applied to sample generation for other types of vulnerability attacks.
ISSN: 2693-2865
Hussainy, Abdelrahman S., Khalifa, Mahmoud A., Elsayed, Abdallah, Hussien, Amr, Razek, Mohammed Abdel.
2022.
Deep Learning Toward Preventing Web Attacks. 2022 5th International Conference on Computing and Informatics (ICCI). :280–285.
Cyberattacks are one of the most pressing issues of our time. The impact of cyberthreats can damage various sectors such as business, health care, and governments, so one of the best solutions to deal with these cyberattacks and reduce cybersecurity threats is using Deep Learning. In this paper, we have created an in-depth study model to detect SQL Injection Attacks and Cross-Site Script attacks. We focused on XSS on the Stored-XSS attack type because SQL and Stored-XSS have similar site management methods. The advantage of combining deep learning with cybersecurity in our system is to detect and prevent short-term attacks without human interaction, so our system can reduce and prevent web attacks. This post-training model achieved a more accurate result more than 99% after maintaining the learning level, and 99% of our test data is determined by this model if this input is normal or dangerous.
Muliono, Yohan, Darus, Mohamad Yusof, Pardomuan, Chrisando Ryan, Ariffin, Muhammad Azizi Mohd, Kurniawan, Aditya.
2022.
Predicting Confidentiality, Integrity, and Availability from SQL Injection Payload. 2022 International Conference on Information Management and Technology (ICIMTech). :600–605.
SQL Injection has been around as a harmful and prolific threat on web applications for more than 20 years, yet it still poses a huge threat to the World Wide Web. Rapidly evolving web technology has not eradicated this threat; In 2017 51 % of web application attacks are SQL injection attacks. Most conventional practices to prevent SQL injection attacks revolves around secure web and database programming and administration techniques. Despite developer ignorance, a large number of online applications remain susceptible to SQL injection attacks. There is a need for a more effective method to detect and prevent SQL Injection attacks. In this research, we offer a unique machine learning-based strategy for identifying potential SQL injection attack (SQL injection attack) threats. Application of the proposed method in a Security Information and Event Management(SIEM) system will be discussed. SIEM can aggregate and normalize event information from multiple sources, and detect malicious events from analysis of these information. The result of this work shows that a machine learning based SQL injection attack detector which uses SIEM approach possess high accuracy in detecting malicious SQL queries.