Hong, Geng, Yang, Zhemin, Yang, Sen, Liaoy, Xiaojing, Du, Xiaolin, Yang, Min, Duan, Haixin.
2022.
Analyzing Ground-Truth Data of Mobile Gambling Scams. 2022 IEEE Symposium on Security and Privacy (SP). :2176–2193.
With the growth of mobile computing techniques, mobile gambling scams have seen a rampant increase in the recent past. In mobile gambling scams, miscreants deliver scamming messages via mobile instant messaging, host scam gambling platforms on mobile apps, and adopt mobile payment channels. To date, there is little quantitative knowledge about how this trending cybercrime operates, despite causing daily fraud losses estimated at more than \$\$\$522,262 USD. This paper presents the first empirical study based on ground-truth data of mobile gambling scams, associated with 1,461 scam incident reports and 1,487 gambling scam apps, spanning from January 1, 2020 to December 31, 2020. The qualitative and quantitative analysis of this ground-truth data allows us to characterize the operational pipeline and full fraud kill chain of mobile gambling scams. In particular, we study the social engineering tricks used by scammers and reveal their effectiveness. Our work provides a systematic analysis of 1,068 confirmed Android and 419 iOS scam apps, including their development frameworks, declared permissions, compatibility, and backend network infrastructure. Perhaps surprisingly, our study unveils that public online app generators have been abused to develop gambling scam apps. Our analysis reveals several payment channels (ab)used by gambling scam app and uncovers a new type of money mule-based payment channel with the average daily gambling deposit of \$\$\$400,000 USD. Our findings enable a better understanding of the mobile gambling scam ecosystem, and suggest potential avenues to disrupt these scam activities.
ISSN: 2375-1207
Saxena, Anish, Panda, Biswabandan.
2022.
DABANGG: A Case for Noise Resilient Flush-Based Cache Attacks. 2022 IEEE Security and Privacy Workshops (SPW). :323–334.
Flush-based cache attacks like Flush+Reload and Flush+Flush are highly precise and effective. Most of the flush-based attacks provide high accuracy in controlled and isolated environments where attacker and victim share OS pages. However, we observe that these attacks are prone to low accuracy on a noisy multi-core system with co-running applications. Two root causes for the varying accuracy of flush-based attacks are: (i) the dynamic nature of core frequencies that fluctuate depending on the system load, and (ii) the relative placement of victim and attacker threads in the processor, like same or different physical cores. These dynamic factors critically affect the execution latency of key instructions like clflush and mov, rendering the pre-attack calibration step ineffective.We propose DABANGG, a set of novel refinements to make flush-based attacks resilient to system noise by making them aware of frequency and thread placement. First, we introduce pre-attack calibration that is aware of instruction latency variation. Second, we use low-cost attack-time optimizations like fine-grained busy waiting and periodic feedback about the latency thresholds to improve the effectiveness of the attack. Finally, we provide victim-specific parameters that significantly improve the attack accuracy. We evaluate DABANGG-enabled Flush+Reload and Flush+Flush attacks against the standard attacks in side-channel and covert-channel experiments with varying levels of compute, memory, and IO-intensive system noise. In all scenarios, DABANGG+Flush+Reload and DABANGG+Flush+Flush outperform the standard attacks in stealth and accuracy.
ISSN: 2770-8411
Gunathilake, Nilupulee A., Al-Dubai, Ahmed, Buchanan, William J., Lo, Owen.
2022.
Electromagnetic Side-Channel Attack Resilience against PRESENT Lightweight Block Cipher. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :51–55.
Lightweight cryptography is a novel diversion from conventional cryptography that targets internet-of-things (IoT) platform due to resource constraints. In comparison, it offers smaller cryptographic primitives such as shorter key sizes, block sizes and lesser energy drainage. The main focus can be seen in algorithm developments in this emerging subject. Thus, verification is carried out based upon theoretical (mathematical) proofs mostly. Among the few available side-channel analysis studies found in literature, the highest percentage is taken by power attacks. PRESENT is a promising lightweight block cipher to be included in IoT devices in the near future. Thus, the emphasis of this paper is on lightweight cryptology, and our investigation shows unavailability of a correlation electromagnetic analysis (CEMA) of it. Hence, in an effort to fill in this research gap, we opted to investigate the capabilities of CEMA against the PRESENT algorithm. This work aims to determine the probability of secret key leakage with a minimum number of electromagnetic (EM) waveforms possible. The process initially started from a simple EM analysis (SEMA) and gradually enhanced up to a CEMA. This paper presents our methodology in attack modelling, current results that indicate a probability of leaking seven bytes of the key and upcoming plans for optimisation. In addition, introductions to lightweight cryptanalysis and theories of EMA are also included.
Nkoro, Ebuka Chinaechetam, Nwakanma, Cosmas Ifeanyi, Lee, Jae-Min, Kim, Dong-Seong.
2022.
Industrial Network Attack Vulnerability Detection and Analysis using Shodan Eye Scanning Technology. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :886–889.
Exploring the efficient vulnerability scanning and detection technology of various tools is one fundamental aim of network security. This network security technique ameliorates the tremendous number of IoT security challenges and the threats they face daily. However, among various tools, Shodan Eye scanning technology has proven to be very helpful for network administrators and security personnel to scan, detect and analyze vulnerable ports and traffic in organizations' networks. This work presents a simulated network scanning activity and manual vulnerability analysis of an internet-connected industrial equipment of two chosen industrial networks (Industry A and B) by running Shodan on a virtually hosted (Oracle Virtual Box)-Linux-based operating system (Kali Linux). The result shows that the shodan eye is a a promising tool for network security and efficient vulnerability research.
ISSN: 2162-1241
Lin, Zhenpeng, Chen, Yueqi, Wu, Yuhang, Mu, Dongliang, Yu, Chensheng, Xing, Xinyu, Li, Kang.
2022.
GREBE: Unveiling Exploitation Potential for Linux Kernel Bugs. 2022 IEEE Symposium on Security and Privacy (SP). :2078–2095.
Nowadays, dynamic testing tools have significantly expedited the discovery of bugs in the Linux kernel. When unveiling kernel bugs, they automatically generate reports, specifying the errors the Linux encounters. The error in the report implies the possible exploitability of the corresponding kernel bug. As a result, many security analysts use the manifested error to infer a bug’s exploitability and thus prioritize their exploit development effort. However, using the error in the report, security researchers might underestimate a bug’s exploitability. The error exhibited in the report may depend upon how the bug is triggered. Through different paths or under different contexts, a bug may manifest various error behaviors implying very different exploitation potentials. This work proposes a new kernel fuzzing technique to explore all the possible error behaviors that a kernel bug might bring about. Unlike conventional kernel fuzzing techniques concentrating on kernel code coverage, our fuzzing technique is more directed towards the buggy code fragment. It introduces an object-driven kernel fuzzing technique to explore various contexts and paths to trigger the reported bug, making the bug manifest various error behaviors. With the newly demonstrated errors, security researchers could better infer a bug’s possible exploitability. To evaluate our proposed technique’s effectiveness, efficiency, and impact, we implement our fuzzing technique as a tool GREBE and apply it to 60 real-world Linux kernel bugs. On average, GREBE could manifest 2+ additional error behaviors for each of the kernel bugs. For 26 kernel bugs, GREBE discovers higher exploitation potential. We report to kernel vendors some of the bugs – the exploitability of which was wrongly assessed and the corresponding patch has not yet been carefully applied – resulting in their rapid patch adoption.
ISSN: 2375-1207