Visible to the public Biblio

Filters: Keyword is swarm intelligence  [Clear All Filters]
2023-01-05
Sarwar, Asima, Hasan, Salva, Khan, Waseem Ullah, Ahmed, Salman, Marwat, Safdar Nawaz Khan.  2022.  Design of an Advance Intrusion Detection System for IoT Networks. 2022 2nd International Conference on Artificial Intelligence (ICAI). :46–51.
The Internet of Things (IoT) is advancing technology by creating smart surroundings that make it easier for humans to do their work. This technological advancement not only improves human life and expands economic opportunities, but also allows intruders or attackers to discover and exploit numerous methods in order to circumvent the security of IoT networks. Hence, security and privacy are the key concerns to the IoT networks. It is vital to protect computer and IoT networks from many sorts of anomalies and attacks. Traditional intrusion detection systems (IDS) collect and employ large amounts of data with irrelevant and inappropriate attributes to train machine learning models, resulting in long detection times and a high rate of misclassification. This research presents an advance approach for the design of IDS for IoT networks based on the Particle Swarm Optimization Algorithm (PSO) for feature selection and the Extreme Gradient Boosting (XGB) model for PSO fitness function. The classifier utilized in the intrusion detection process is Random Forest (RF). The IoTID20 is being utilized to evaluate the efficacy and robustness of our suggested strategy. The proposed system attains the following level of accuracy on the IoTID20 dataset for different levels of classification: Binary classification 98 %, multiclass classification 83 %. The results indicate that the proposed framework effectively detects cyber threats and improves the security of IoT networks.
Ma, Xiandong, Su, Zhou, Xu, Qichao, Ying, Bincheng.  2022.  Edge Computing and UAV Swarm Cooperative Task Offloading in Vehicular Networks. 2022 International Wireless Communications and Mobile Computing (IWCMC). :955–960.
Recently, unmanned aerial vehicle (UAV) swarm has been advocated to provide diverse data-centric services including data relay, content caching and computing task offloading in vehicular networks due to their flexibility and conveniences. Since only offloading computing tasks to edge computing devices (ECDs) can not meet the real-time demand of vehicles in peak traffic flow, this paper proposes to combine edge computing and UAV swarm for cooperative task offloading in vehicular networks. Specifically, we first design a cooperative task offloading framework that vehicles' computing tasks can be executed locally, offloaded to UAV swarm, or offloaded to ECDs. Then, the selection of offloading strategy is formulated as a mixed integer nonlinear programming problem, the object of which is to maximize the utility of the vehicle. To solve the problem, we further decompose the original problem into two subproblems: minimizing the completion time when offloading to UAV swarm and optimizing the computing resources when offloading to ECD. For offloading to UAV swarm, the computing task will be split into multiple subtasks that are offloaded to different UAVs simultaneously for parallel computing. A Q-learning based iterative algorithm is proposed to minimize the computing task's completion time by equalizing the completion time of its subtasks assigned to each UAV. For offloading to ECDs, a gradient descent algorithm is used to optimally allocate computing resources for offloaded tasks. Extensive simulations are lastly conducted to demonstrate that the proposed scheme can significantly improve the utility of vehicles compared with conventional schemes.
Tuba, Eva, Alihodzic, Adis, Tuba, Una, Capor Hrosik, Romana, Tuba, Milan.  2022.  Swarm Intelligence Approach for Feature Selection Problem. 2022 10th International Symposium on Digital Forensics and Security (ISDFS). :1–6.
Classification problems have been part of numerous real-life applications in fields of security, medicine, agriculture, and more. Due to the wide range of applications, there is a constant need for more accurate and efficient methods. Besides more efficient and better classification algorithms, the optimal feature set is a significant factor for better classification accuracy. In general, more features can better describe instances, but besides showing differences between instances of different classes, it can also capture many similarities that lead to wrong classification. Determining the optimal feature set can be considered a hard optimization problem for which different metaheuristics, like swarm intelligence algorithms can be used. In this paper, we propose an adaptation of hybridized swarm intelligence (SI) algorithm for feature selection problem. To test the quality of the proposed method, classification was done by k-means algorithm and it was tested on 17 benchmark datasets from the UCI repository. The results are compared to similar approaches from the literature where SI algorithms were used for feature selection, which proves the quality of the proposed hybridized SI method. The proposed method achieved better classification accuracy for 16 datasets. Higher classification accuracy was achieved while simultaneously reducing the number of used features.
Wei, Lianghao, Cai, Zhaonian, Zhou, Kun.  2022.  Multi-objective Gray Wolf Optimization Algorithm for Multi-agent Pathfinding Problem. 2022 IEEE 5th International Conference on Electronics Technology (ICET). :1241–1249.
As a core problem of multi-agent systems, multiagent pathfinding has an important impact on the efficiency of multi-agent systems. Because of this, many novel multi-agent pathfinding methods have been proposed over the years. However, these methods have focused on different agents with different goals for research, and less research has been done on scenarios where different agents have the same goal. We propose a multiagent pathfinding method incorporating a multi-objective gray wolf optimization algorithm to solve the multi-agent pathfinding problem with the same objective. First, constrained optimization modeling is performed to obtain objective functions about agent wholeness and security. Then, the multi-objective gray wolf optimization algorithm is improved for solving the constrained optimization problem and further optimized for scenarios with insufficient computational resources. To verify the effectiveness of the multi-objective gray wolf optimization algorithm, we conduct experiments in a series of simulation environments and compare the improved multi-objective grey wolf optimization algorithm with some classical swarm intelligence optimization algorithms. The results show that the multi-agent pathfinding method incorporating the multi-objective gray wolf optimization algorithm is more efficient in handling multi-agent pathfinding problems with the same objective.
Ranganathan, Sathishkumar, Mariappan, Muralindran, Muthukaruppan, Karthigayan.  2022.  Efficient Distributed Consensus Algorithm For Swarm Robotic. 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET). :1–6.
Swarm robotics is a network based multi-device system designed to achieve shared objectives in a synchronized way. This system is widely used in industries like farming, manufacturing, and defense applications. In recent implementations, swarm robotics is integrated with Blockchain based networks to enhance communication, security, and decentralized decision-making capabilities. As most of the current blockchain applications are based on complex consensus algorithms, every individual robot in the swarm network requires high computing power to run these complex algorithms. Thus, it is a challenging task to achieve consensus between the robots in the network. This paper will discuss the details of designing an effective consensus algorithm that meets the requirements of swarm robotics network.
Garcia, Carla E., Camana, Mario R., Koo, Insoo.  2022.  DNN aided PSO based-scheme for a Secure Energy Efficiency Maximization in a cooperative NOMA system with a non-linear EH. 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN). :155–160.
Physical layer security is an emerging security area to tackle wireless security communications issues and complement conventional encryption-based techniques. Thus, we propose a novel scheme based on swarm intelligence optimization technique and a deep neural network (DNN) for maximizing the secrecy energy efficiency (SEE) in a cooperative relaying underlay cognitive radio- and non-orthogonal multiple access (NOMA) system with a non-linear energy harvesting user which is exposed to multiple eavesdroppers. Satisfactorily, simulation results show that the proposed particle swarm optimization (PSO)-DNN framework achieves close performance to that of the optimal solutions, with a meaningful reduction in computation complexity.
Sewak, Mohit, Sahay, Sanjay K., Rathore, Hemant.  2022.  X-Swarm: Adversarial DRL for Metamorphic Malware Swarm Generation. 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :169–174.
Advanced metamorphic malware and ransomware use techniques like obfuscation to alter their internal structure with every attack. Therefore, any signature extracted from such attack, and used to bolster endpoint defense, cannot avert subsequent attacks. Therefore, if even a single such malware intrudes even a single device of an IoT network, it will continue to infect the entire network. Scenarios where an entire network is targeted by a coordinated swarm of such malware is not beyond imagination. Therefore, the IoT era also requires Industry-4.0 grade AI-based solutions against such advanced attacks. But AI-based solutions need a large repository of data extracted from similar attacks to learn robust representations. Whereas, developing a metamorphic malware is a very complex task and requires extreme human ingenuity. Hence, there does not exist abundant metamorphic malware to train AI-based defensive solutions. Also, there is currently no system that could generate enough functionality preserving metamorphic variants of multiple malware to train AI-based defensive systems. Therefore, to this end, we design and develop a novel system, named X-Swarm. X-Swarm uses deep policy-based adversarial reinforcement learning to generate swarm of metamorphic instances of any malware by obfuscating them at the opcode level and ensuring that they could evade even capable, adversarial-attack immune endpoint defense systems.
Jovanovic, Dijana, Marjanovic, Marina, Antonijevic, Milos, Zivkovic, Miodrag, Budimirovic, Nebojsa, Bacanin, Nebojsa.  2022.  Feature Selection by Improved Sand Cat Swarm Optimizer for Intrusion Detection. 2022 International Conference on Artificial Intelligence in Everything (AIE). :685–690.
The rapid growth of number of devices that are connected to internet of things (IoT) networks, increases the severity of security problems that need to be solved in order to provide safe environment for network data exchange. The discovery of new vulnerabilities is everyday challenge for security experts and many novel methods for detection and prevention of intrusions are being developed for dealing with this issue. To overcome these shortcomings, artificial intelligence (AI) can be used in development of advanced intrusion detection systems (IDS). This allows such system to adapt to emerging threats, react in real-time and adjust its behavior based on previous experiences. On the other hand, the traffic classification task becomes more difficult because of the large amount of data generated by network systems and high processing demands. For this reason, feature selection (FS) process is applied to reduce data complexity by removing less relevant data for the active classification task and therefore improving algorithm's accuracy. In this work, hybrid version of recently proposed sand cat swarm optimizer algorithm is proposed for feature selection with the goal of increasing performance of extreme learning machine classifier. The performance improvements are demonstrated by validating the proposed method on two well-known datasets - UNSW-NB15 and CICIDS-2017, and comparing the results with those reported for other cutting-edge algorithms that are dealing with the same problems and work in a similar configuration.
Petrenko, Vyacheslav, Tebueva, Fariza, Ryabtsev, Sergey, Antonov, Vladimir, Struchkov, Igor.  2022.  Data Based Identification of Byzantine Robots for Collective Decision Making. 2022 13th Asian Control Conference (ASCC). :1724–1727.
The development of new types of technology actualizes the issues of ensuring their information security. The aim of the work is to increase the security of the collective decision-making process in swarm robotic systems from negative impacts by identifying malicious robots. It is proposed to use confidence in choosing an alternative when reaching a consensus as a criterion for identifying malicious robots - a malicious robot, having a special behavior strategy, does not fully take into account the signs of the external environment and information from other robots, which means that such a robot will change its mind with characteristic features for each malicious strategy, and its degree of confidence will be different from the usual voting robot. The modeling performed and the obtained experimental data on three types of malicious behavioral strategies demonstrate the possibility of using the degree of confidence to identify malicious robots. The advantages of the approach are taking into account a large number of alternatives and universality, which lies in the fact that the method is based on the mechanisms of collective decision-making, which proceed in the same way on various hardware platforms of swarm robotic systems. The proposed method can serve as a basis for the development of more complex security mechanisms in swarm robotic systems.
Baptista, Kevin, Bernardino, Eugénia, Bernardino, Anabela.  2022.  Swarm Intelligence applied to SQL Injection. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). :1–6.
The Open Web Application Security Project (OWASP) (a non-profit foundation that works to improve computer security) considered, in 2021, injection as one of the biggest risks in web applications. SQL injection despite being a vulnerability easily avoided has a great insurgency in web applications, and its impact is quite nefarious. To identify and exploit vulnerabilities in a system, algorithms based on Swarm Intelligence (SI) can be used. This article proposes and describes a new approach that uses SI and attack vectors to identify Structured Query Language (SQL) Injection vulnerabilities. The results obtained show the efficiency of the proposed approach.
2022-08-12
R, Prasath, Rajan, Rajesh George.  2021.  Autonomous Application in Requirements Analysis of Information System Development for Producing a Design Model. 2021 2nd International Conference on Communication, Computing and Industry 4.0 (C2I4). :1—8.
The main technology of traditional information security is firewall, intrusion detection and anti-virus software, which is used in the first anti-outer defence, the first anti-service terminal defence terminal passive defence ideas, the complexity and complexity of these security technologies not only increase the complexity of the autonomous system, reduce the efficiency of the system, but also cannot solve the security problem of the information system, and cannot satisfy the security demand of the information system. After a significant stretch of innovative work, individuals utilize the secret word innovation, network security innovation, set forward the idea “confided in figuring” in view of the equipment security module support, Trusted processing from changing the customary protection thoughts, center around the safety efforts taken from the terminal to forestall framework assaults, from the foundation of the stage, the acknowledgment of the security of data frameworks. Believed figuring is chiefly worried about the security of the framework terminal, utilizing a progression of safety efforts to ensure the protection of clients to work on the security of independent frameworks. Its principle plan thought is implanted in a typical machine to oppose altering the equipment gadget - confided in stage module as the base of the trust, the utilization of equipment and programming innovation to join the trust of the base of trust through the trust bind level to the entire independent framework, joined with the security of information stockpiling insurance, client validation and stage respectability of the three significant safety efforts guarantee that the terminal framework security and unwavering quality, to guarantee that the terminal framework is consistently in a condition of conduct anticipated.
2022-08-10
Kalpana, C., Booba, B..  2021.  Bio-Inspired Firefly Algorithm A Methodical Survey – Swarm Intelligence Algorithm. 2021 International Conference on Computational Intelligence and Computing Applications (ICCICA). :1—7.
In the Swarm Intelligence domain, the firefly algorithm(s) is the most significant algorithm applied in most all optimization areas. FA and variants are easily understood and implemented. FA is capable of solving different domain problems. For solving diverse range of engineering problems requires modified FA or Hybrid FA algorithms, but it is possible additional scope of improvement. In recent times swarm intelligence based intelligent optimization algorithms have been used for Research purposes. FA is one of most important intelligence Swarm algorithm that can be applied for the problems of Global optimization. FA algorithm is capable of achieving best results for complicated issues. In this research study we have discussed and different characteristics of FA and presented brief Review of FA. Along with other metahauristic algorithm we have discussed FA algorithm’s different variant like multi objective, and hybrid. The applications of firefly algorithm are bestowed. The aim of the paper is to give future direction for research in FA.
2022-03-25
Das, Indrajit, Singh, Shalini, Sarkar, Ayantika.  2021.  Serial and Parallel based Intrusion Detection System using Machine Learning. 2021 Devices for Integrated Circuit (DevIC). :340—344.

Cyberattacks have been the major concern with the growing advancement in technology. Complex security models have been developed to combat these attacks, yet none exhibit a full-proof performance. Recently, several machine learning (ML) methods have gained significant popularity in offering effective and efficient intrusion detection schemes which assist in proactive detection of multiple network intrusions, such as Denial of Service (DoS), Probe, Remote to User (R2L), User to Root attack (U2R). Multiple research works have been surveyed based on adopted ML methods (either signature-based or anomaly detection) and some of the useful observations, performance analysis and comparative study are highlighted in this paper. Among the different ML algorithms in survey, PSO-SVM algorithm has shown maximum accuracy. Using RBF-based classifier and C-means clustering algorithm, a new model i.e., combination of serial and parallel IDS is proposed in this paper. The detection rate to detect known and unknown intrusion is 99.5% and false positive rate is 1.3%. In PIDS (known intrusion classifier), the detection rate for DOS, probe, U2R and R2L is 99.7%, 98.8%, 99.4% and 98.5% and the False positive rate is 0.6%, 0.2%, 3% and 2.8% respectively. In SIDS (unknown intrusion classifier), the rate of intrusion detection is 99.1% and false positive rate is 1.62%. This proposed model has known intrusion detection accuracy similar to PSO - SVM and is better than all other models. Finally the future research directions relevant to this domain and contributions have been discussed.

Shi, Peng, Chen, Xuebing, Kong, Xiangying, Cao, Xianghui.  2021.  SE-IDS: A Sample Equalization Method for Intrusion Detection in Industrial Control System. 2021 36th Youth Academic Annual Conference of Chinese Association of Automation (YAC). :189—195.

With the continuous emergence of cyber attacks, the security of industrial control system (ICS) has become a hot issue in academia and industry. Intrusion detection technology plays an irreplaceable role in protecting industrial system from attacks. However, the imbalance between normal samples and attack samples seriously affects the performance of intrusion detection algorithms. This paper proposes SE-IDS, which uses generative adversarial networks (GAN) to expand the minority to make the number of normal samples and attack samples relatively balanced, adopts particle swarm optimization (PSO) to optimize the parameters of LightGBM. Finally, we evaluated the performance of the proposed model on the industrial network dataset.

Kumar, Sandeep A., Chand, Kunal, Paea, Lata I., Thakur, Imanuel, Vatikani, Maria.  2021.  Herding Predators Using Swarm Intelligence. 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE). :1—6.

Swarm intelligence, a nature-inspired concept that includes multiplicity, stochasticity, randomness, and messiness is emergent in most real-life problem-solving. The concept of swarming can be integrated with herding predators in an ecological system. This paper presents the development of stabilizing velocity-based controllers for a Lagrangian swarm of \$nın \textbackslashtextbackslashmathbbN\$ individuals, which are supposed to capture a moving target (intruder). The controllers are developed from a Lyapunov function, total potentials, designed via Lyapunov-based control scheme (LbCS) falling under the classical approach of artificial potential fields method. The interplay of the three central pillars of LbCS, which are safety, shortness, and smoothest course for motion planning, results in cost and time effectiveness and efficiency of velocity controllers. Computer simulations illustrate the effectiveness of control laws.

Huang, Jiaheng, Chen, Lei.  2021.  Transfer Learning Based Multi-objective Particle Swarm Optimization Algorithm. 2021 17th International Conference on Computational Intelligence and Security (CIS). :382—386.

In Particle Swarm Optimization Algorithm (PSO), the learning factors \$c\_1\$ and \$c\_2\$ are used to update the speed and location of a particle. However, the setting of those two important parameters has great effect on the performance of the PSO algorithm, which has limited its range of applications. To avoid the tedious parameter tuning, we introduce a transfer learning based adaptive parameter setting strategy to PSO in this paper. The proposed transfer learning strategy can adjust the two learning factors more effectively according to the environment change. The performance of the proposed algorithm is tested on sets of widely-used benchmark multi-objective test problems for DTLZ. The results comparing and analysis are conduced by comparing it with the state-of-art evolutionary multi-objective optimization algorithm NSGA-III to verify the effectiveness and efficiency of the proposed method.

Tan, Ziya, Karaköse, Mehmet.  2021.  Proximal Policy Based Deep Reinforcement Learning Approach for Swarm Robots. 2021 Zooming Innovation in Consumer Technologies Conference (ZINC). :166—170.
Artificial intelligence technology is becoming more active in all areas of our lives day by day. This technology affects our daily life by more developing in areas such as industry 4.0, security and education. Deep reinforcement learning is one of the most developed algorithms in the field of artificial intelligence. In this study, it is aimed that three different robots in a limited area learn to move without hitting each other, fixed obstacles and the boundaries of the field. These robots have been trained using the deep reinforcement learning approach and Proximal policy optimization (PPO) policy. Instead of uses value-based methods with the discrete action space, PPO that can easily manipulate the continuous action field and successfully determine the action of the robots has been proposed. PPO policy achieves successful results in multi-agent problems, especially with the use of the Actor-Critic network. In addition, information is given about environment control and learning approaches for swarm behavior. We propose parameter sharing and behavior-based method for this study. Finally, trained model is recorded and tested in 9 different environments where the obstacles are located differently. With our method, robots can perform their tasks in closed environments in the real world without damaging anyone or anything.
Alibrahim, Hussain, Ludwig, Simone A..  2021.  Investigation of Domain Name System Attack Clustering using Semi-Supervised Learning with Swarm Intelligence Algorithms. 2021 IEEE Symposium Series on Computational Intelligence (SSCI). :01—09.

Domain Name System (DNS) is the Internet's system for converting alphabetic names into numeric IP addresses. It is one of the early and vulnerable network protocols, which has several security loopholes that have been exploited repeatedly over the years. The clustering task for the automatic recognition of these attacks uses machine learning approaches based on semi-supervised learning. A family of bio-inspired algorithms, well known as Swarm Intelligence (SI) methods, have recently emerged to meet the requirements for the clustering task and have been successfully applied to various real-world clustering problems. In this paper, Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and Kmeans, which is one of the most popular cluster algorithms, have been applied. Furthermore, hybrid algorithms consisting of Kmeans and PSO, and Kmeans and ABC have been proposed for the clustering process. The Canadian Institute for Cybersecurity (CIC) data set has been used for this investigation. In addition, different measures of clustering performance have been used to compare the different algorithms.

Li, Xin, Yi, Peng, Jiang, Yiming, Lu, Xiangyu.  2021.  Traffic Anomaly Detection Algorithm Based on Improved Salp Swarm Optimal Density Peak Clustering. 2021 4th International Conference on Artificial Intelligence and Big Data (ICAIBD). :187—191.

Aiming at the problems of low accuracy and poor effect caused by the lack of data labels in most real network traffic, an optimized density peak clustering based on the improved salp swarm algorithm is proposed for traffic anomaly detection. Through the optimization of cosine decline and chaos strategy, the salp swarm algorithm not only accelerates the convergence speed, but also enhances the search ability. Moreover, we use the improved salp swarm algorithm to adaptively search the best truncation distance of density peak clustering, which avoids the subjectivity and uncertainty of manually selecting the parameters. The experimental results based on NSL-KDD dataset show that the improved salp swarm algorithm achieves faster convergence speed and higher precision, increases the average anomaly detection accuracy of 4.74% and detection rate of 6.14%, and reduces the average false positive rate of 7.38%.

2022-03-01
Chen, Chen, Song, Li, Bo, Cao, Shuo, Wang.  2021.  A Support Vector Machine with Particle Swarm Optimization Grey Wolf Optimizer for Network Intrusion Detection. 2021 International Conference on Big Data Analysis and Computer Science (BDACS). :199–204.
Support Vector Machine (SVM) is a relatively novel classification technology, which has shown higher performance than traditional learning methods in many applications. Therefore, some security researchers have proposed an intrusion detection method based on SVM. However, the SVM algorithm is very sensitive to the choice of kernel function and parameter adjustment. Once the parameter selection is unscientific, it will lead to poor classification accuracy. To solve this problem, this paper presents a Grey Wolf Optimizer Algorithm based on Particle Swarm Optimization (PSOGWO) algorithm to improve the Intrusion Detection System (IDS) based on SVM. This method uses PSOGWO algorithm to optimize the parameters of SVM to improve the overall performance of intrusion detection based on SVM. The "optimal detection model" of SVM classifier is determined by the fusion of PSOGWO algorithm and SVM. The comparison experiments based on NSL-KDD dataset show that the intrusion detection method based on PSOGWO-SVM achieves the optimization of the parameters of SVM, and has improved significantly in terms of detection rate, convergence speed and model balance. This shows that the method has better performance for network intrusion detection.
2022-01-25
Lin, Jiangnan, Wu, Qiuxin.  2021.  A Security Integrated Attestation Scheme for Embedded Devices. 2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC). :489–493.
With the development of the Internet of Things, embedded devices have become increasingly frequent in people's daily use. However, with the influx of a huge amount of heterogeneous embedded devices, its security has become an important issue. To face with such problems, remote attestation is undoubtedly a suitable security technology. Nevertheless, traditional remote attestation is limited to verifying the performance of devices as large and heterogeneous devices enter daily life. Therefore, this paper proposes a many-to-one swarm attestation and recovery scheme. Besides, the reputation mechanism and Merkel tree measurement method are introduced to reduce the attestation and recovery time of the scheme, and greatly reducing the energy consumption.
2022-01-10
Kalinin, Maxim O., Krundyshev, Vasiliy M..  2021.  Computational Intelligence Technologies Stack for Protecting the Critical Digital Infrastructures against Security Intrusions. 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4). :118–122.
Over the past decade, an infotelecommunication technology has made significant strides forward. With the advent of new generation wireless networks and the massive digitalization of industries, the object of protection has changed. The digital transformation has led to an increased opportunity for cybercriminals. The ability of computational intelligence to quickly process large amounts of data makes the intrusions tailored to specific environments. Polymorphic attacks that have mutations in their sequences of acts adapt to the communication environments, operating systems and service frameworks, and also try to deceive the defense tools. The poor protection of most Internet of Things devices allows the attackers to take control over them creating the megabotnets. In this regard, traditional methods of network protection become rigid and low-effective. The paper reviews a computational intelligence (CI) enabled software- defined network (SDN) for the network management, providing dynamic network reconfiguration to improve network performance and security control. Advanced machine learning and artificial neural networks are promising in detection of false data injections. Bioinformatics methods make it possible to detect polymorphic attacks. Swarm intelligence detects dynamic routing anomalies. Quantum machine learning is effective at processing the large volumes of security-relevant datasets. The CI technology stack provides a comprehensive protection against a variative cyberthreats scope.
2021-12-20
Wang, Yinuo, Liu, Shujuan, Zhou, Jingyuan, Sun, Tengxuan.  2021.  Particle Filtering Based on Biome Intelligence Algorithm. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :156–161.
Particle filtering is an indispensable method for non-Gaussian state estimation, but it has some problems, such as particle degradation and requiring a large number of particles to ensure accuracy. Biota intelligence algorithms led by Cuckoo (CS) and Firefly (FA) have achieved certain results after introducing particle filtering, respectively. This paper respectively in the two kinds of bionic algorithm convergence factor and adaptive step length and random mobile innovation, seized the cuckoo algorithm (CS) in the construction of the initial value and the firefly algorithm (FA) in the iteration convergence advantages, using the improved after the update mechanism of cuckoo algorithm optimizing the initial population, and will be updated after optimization way of firefly algorithm combined with particle filter. Experimental results show that this method can ensure the diversity of particles and greatly reduce the number of particles needed for prediction while improving the filtering accuracy.
2020-12-14
Xu, S., Ouyang, Z., Feng, J..  2020.  An Improved Multi-objective Particle Swarm Optimization. 2020 5th International Conference on Computational Intelligence and Applications (ICCIA). :19–23.
For solving multi-objective optimization problems, this paper firstly combines a multi-objective evolutionary algorithm based on decomposition (MOEA/D) with good convergence and non-dominated sorting genetic algorithm II (NSGA-II) with good distribution to construct. Thus we propose a hybrid multi-objective optimization solving algorithm. Then, we consider that the population diversity needs to be improved while applying multi-objective particle swarm optimization (MOPSO) to solve the multi-objective optimization problems and an improved MOPSO algorithm is proposed. We give the distance function between the individual and the population, and the individual with the largest distance is selected as the global optimal individual to maintain population diversity. Finally, the simulation experiments are performed on the ZDT\textbackslashtextbackslashDTLZ test functions and track planning problems. The results indicate the better performance of the improved algorithms.
Cai, L., Hou, Y., Zhao, Y., Wang, J..  2020.  Application research and improvement of particle swarm optimization algorithm. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :238–241.
Particle swarm optimization (PSO), as a kind of swarm intelligence algorithm, has the advantages of simple algorithm principle, less programmable parameters and easy programming. Many scholars have applied particle swarm optimization (PSO) to various fields through learning it, and successfully solved linear problems, nonlinear problems, multiobjective optimization and other problems. However, the algorithm also has obvious problems in solving problems, such as slow convergence speed, too early maturity, falling into local optimization in advance, etc., which makes the convergence speed slow, search the optimal value accuracy is not high, and the optimization effect is not ideal. Therefore, many scholars have improved the particle swarm optimization algorithm. Taking into account the improvement ideas proposed by scholars in the early stage and the shortcomings still existing in the improvement, this paper puts forward the idea of improving particle swarm optimization algorithm in the future.