Visible to the public Biblio

Found 168 results

Filters: Keyword is Elliptic curve cryptography  [Clear All Filters]
2020-09-14
Chatterjee, Urbi, Govindan, Vidya, Sadhukhan, Rajat, Mukhopadhyay, Debdeep, Chakraborty, Rajat Subhra, Mahata, Debashis, Prabhu, Mukesh M..  2019.  Building PUF Based Authentication and Key Exchange Protocol for IoT Without Explicit CRPs in Verifier Database. IEEE Transactions on Dependable and Secure Computing. 16:424–437.
Physically Unclonable Functions (PUFs) promise to be a critical hardware primitive to provide unique identities to billions of connected devices in Internet of Things (IoTs). In traditional authentication protocols a user presents a set of credentials with an accompanying proof such as password or digital certificate. However, IoTs need more evolved methods as these classical techniques suffer from the pressing problems of password dependency and inability to bind access requests to the “things” from which they originate. Additionally, the protocols need to be lightweight and heterogeneous. Although PUFs seem promising to develop such mechanism, it puts forward an open problem of how to develop such mechanism without needing to store the secret challenge-response pair (CRP) explicitly at the verifier end. In this paper, we develop an authentication and key exchange protocol by combining the ideas of Identity based Encryption (IBE), PUFs and Key-ed Hash Function to show that this combination can help to do away with this requirement. The security of the protocol is proved formally under the Session Key Security and the Universal Composability Framework. A prototype of the protocol has been implemented to realize a secured video surveillance camera using a combination of an Intel Edison board, with a Digilent Nexys-4 FPGA board consisting of an Artix-7 FPGA, together serving as the IoT node. We show, though the stand-alone video camera can be subjected to man-in-the-middle attack via IP-spoofing using standard network penetration tools, the camera augmented with the proposed protocol resists such attacks and it suits aptly in an IoT infrastructure making the protocol deployable for the industry.
2020-08-10
Almajed, Hisham N., Almogren, Ahmad S..  2019.  SE-Enc: A Secure and Efficient Encoding Scheme Using Elliptic Curve Cryptography. IEEE Access. 7:175865–175878.
Many applications use asymmetric cryptography to secure communications between two parties. One of the main issues with asymmetric cryptography is the need for vast amounts of computation and storage. While this may be true, elliptic curve cryptography (ECC) is an approach to asymmetric cryptography used widely in low computation devices due to its effectiveness in generating small keys with a strong encryption mechanism. The ECC decreases power consumption and increases device performance, thereby making it suitable for a wide range of devices, ranging from sensors to the Internet of things (IoT) devices. It is necessary for the ECC to have a strong implementation to ensure secure communications, especially when encoding a message to an elliptic curve. It is equally important for the ECC to secure the mapping of the message to the curve used in the encryption. This work objective is to propose a trusted and proofed scheme that offers authenticated encryption (AE) for both encoding and mapping a message to the curve. In addition, this paper provides analytical results related to the security requirements of the proposed scheme against several encryption techniques. Additionally, a comparison is undertaken between the SE-Enc and other state-of-the-art encryption schemes to evaluate the performance of each scheme.
Li, Wei, Mclernon, Des, Wong, Kai-Kit, Wang, Shilian, Lei, Jing, Zaidi, Syed Ali Raza.  2019.  Asymmetric Physical Layer Encryption for Wireless Communications. IEEE Access. 7:46959–46967.
In this paper, we establish a cryptographic primitive for wireless communications. An asymmetric physical layer encryption (PLE) scheme based on elliptic curve cryptography is proposed. Compared with the conventional symmetric PLE, asymmetric PLE avoids the need of key distribution on a private channel, and it has more tools available for processing complex-domain signals to confuse possible eavesdroppers when compared with upper-layer public key encryption. We use quantized information entropy to measure the constellation confusion degree. The numerical results show that the proposed scheme provides greater confusion to eavesdroppers and yet does not affect the bit error rate (BER) of the intended receiver (the information entropy of the constellation increases to 17.5 for 9-bit quantization length). The scheme also has low latency and complexity [O(N2.37), where N is a fixed block size], which is particularly attractive for implementation.
Luo, Yuling, Ouyang, Xue, Liu, Junxiu, Cao, Lvchen.  2019.  An Image Encryption Method Based on Elliptic Curve Elgamal Encryption and Chaotic Systems. IEEE Access. 7:38507–38522.
Due to the potential security problem about key management and distribution for the symmetric image encryption schemes, a novel asymmetric image encryption method is proposed in this paper, which is based on the elliptic curve ElGamal (EC-ElGamal) cryptography and chaotic theory. Specifically, the SHA-512 hash is first adopted to generate the initial values of a chaotic system, and a crossover permutation in terms of chaotic index sequence is used to scramble the plain-image. Furthermore, the generated scrambled image is embedded into the elliptic curve for the encrypted by EC-ElGamal which can not only improve the security but also can help solve the key management problems. Finally, the diffusion combined chaos game with DNA sequence is executed to get the cipher image. The experimental analysis and performance comparisons demonstrate that the proposed method has high security, good efficiency, and strong robustness against the chosen-plaintext attack which make it have potential applications for the image secure communications.
2020-07-30
Gauniyal, Rishav, Jain, Sarika.  2019.  IoT Security in Wireless Devices. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :98—102.

IoT is evolving as a combination of interconnected devices over a particular network. In the proposed paper, we discuss about the security of IoT system in the wireless devices. IoT security is the platform in which the connected devices over the network are safeguarded over internet of things framework. Wireless devices play an eminent role in this kind of networks since most of the time they are connected to the internet. Accompanied by major users cannot ensure their end to end security in the IoT environment. However, connecting these devices over the internet via using IoT increases the chance of being prone to the serious issues that may affect the system and its data if they are not protected efficiently. In the proposed paper, the security of IoT in wireless devices will be enhanced by using ECC. Since the issues related to security are becoming common these days, an attempt has been made in this proposed paper to enhance the security of IoT networks by using ECC for wireless devices.

2020-07-24
Reshma, V., Gladwin, S. Joseph, Thiruvenkatesan, C..  2019.  Pairing-Free CP-ABE based Cryptography Combined with Steganography for Multimedia Applications. 2019 International Conference on Communication and Signal Processing (ICCSP). :0501—0505.

Technology development has led to rapid increase in demands for multimedia applications. Due to this demand, digital archives are increasingly used to store these multimedia contents. Cloud is the commonly used archive to store, transmit, receive and share multimedia contents. Cloud makes use of internet to perform these tasks due to which data becomes more prone to attacks. Data security and privacy are compromised. This can be avoided by limiting data access to authenticated users and by hiding the data from cloud services that cannot be trusted. Hiding data from the cloud services involves encrypting the data before storing it into the cloud. Data to be shared with other users can be encrypted by utilizing Cipher Text-Policy Attribute Based Encryption (CP-ABE). CP-ABE is used which is a cryptographic technique that controls access to the encrypted data. The pairing-based computation based on bilinearity is used in ABE due to which the requirements for resources like memory and power supply increases rapidly. Most of the devices that we use today have limited memory. Therefore, an efficient pairing free CP- ABE access control scheme using elliptic curve cryptography has been used. Pairing based computation is replaced with scalar product on elliptic curves that reduces the necessary memory and resource requirements for the users. Even though pairing free CP-ABE is used, it is easier to retrieve the plaintext of a secret message if cryptanalysis is used. Therefore, this paper proposes to combine cryptography with steganography in such a way by embedding crypto text into an image to provide increased level of data security and data ownership for sub-optimal multimedia applications. It makes it harder for a cryptanalyst to retrieve the plaintext of a secret message from a stego-object if steganalysis were not used. This scheme significantly improved the data security as well as data privacy.

2020-07-06
Saffar, Zahra, Mohammadi, Siamak.  2019.  Fault tolerant non-linear techniques for scalar multiplication in ECC. 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC). :104–113.
Elliptic curve cryptography (ECC) has shorter key length than other asymmetric cryptography algorithms such as RSA with the same security level. Existing faults in cryptographic computations can cause faulty results. If a fault occurs during encryption, false information will be sent to the destination, in which case channel error detection codes are unable to detect the fault. In this paper, we consider the error detection in elliptic curve scalar multiplication point, which is the most important operation in ECC. Our technique is based on non-linear error detection codes. We consider an algorithm for scalar multiplication point proposed by Microsoft research group. The proposed technique in our methods has less overhead for additions (36.36%) and multiplications (34.84%) in total, compared to previous works. Also, the proposed method can detect almost 100% of injected faults.
2020-06-26
Ostrowski, Łukasz, Marcinek, Krzysztof, Pleskacz, Witold A..  2019.  Implementation and Comparison of SPA and DPA Countermeasures for Elliptic Curve Point Multiplication. 2019 MIXDES - 26th International Conference "Mixed Design of Integrated Circuits and Systems". :227—230.

The core operation of all cryptosystems based on Elliptic Curve Cryptography is Elliptic Curve Point Multiplication. Depending on implementation it can be vulnerable to different Side Channel Analysis attacks exploiting information leakage, such as power consumption or execution time. Multiple countermeasures against these attacks have been developed over time, each having different impact on parameters of the cryptosystem. This paper summarizes popular countermeasures for simple and differential power analysis attacks on Elliptic Curve cryptosystems. Presented secure algorithms were implemented in Verilog hardware description language and synthesized to logic gates for power trace generation.

Aung, Tun Myat, Hla, Ni Ni.  2019.  A complex number approach to elliptic curve cryptosystems over finite fields: implementations and experiments. 2019 International Conference on Computer Communication and Informatics (ICCCI). :1—8.

Network security is a general idea to ensure information transmission over PC and portable systems. Elliptic curve cryptosystems are nowadays widely used in public communication channels for network security. Their security relies upon the complexity of clarifying the elliptic curve discrete alogarithm issue. But, there are several general attacks in them. Elliptic bend number juggling is actualized over complex fields to enhance the security of elliptic curve cryptosystems. This paper starts with the qualities of elliptic curve cryptosystems and their security administrations. At that point we talk about limited field number-crunching and its properties, prime field number-crunching, twofold field math and complex number-crunching, and elliptic bend number-crunching over prime field and parallel field. This paper proposes how to execute the unpredictable number of math under prime field and double field utilizing java BigInteger class. also, we actualize elliptic bend math and elliptic bend cryptosystems utilizing complex numbers over prime field and double field and talk about our trials that got from the usage.

Salman, Ahmad, El-Tawab, Samy.  2019.  Efficient Hardware/Software Co-Design of Elliptic-Curve Cryptography for the Internet of Things. 2019 International Conference on Smart Applications, Communications and Networking (SmartNets). :1—6.

The Internet of Things (IoT) is connecting the world in a way humanity has never seen before. With applications in healthcare, agricultural, transportation, and more, IoT devices help in bridging the gap between the physical and the virtual worlds. These devices usually carry sensitive data which requires security and protection in transit and rest. However, the limited power and energy consumption make it harder and more challenging to implementing security protocols, especially Public-Key Cryptosystems (PKC). In this paper, we present a hardware/software co-design for Elliptic-Curve Cryptography (ECC) PKC suitable for lightweight devices. We present the implementation results for our design on an edge node to be used for indoor localization in a healthcare facilities.

Gupta, Shubhi, Vashisht, Swati, Singh, Divya, kushwaha, Pradeep.  2019.  Enhancing Big Data Security using Elliptic Curve Cryptography. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :348—351.

Withgrowing times and technology, and the data related to it is increasing on daily basis and so is the daunting task to manage it. The present solution to this problem i.e our present databases, are not the long-term solutions. These data volumes need to be stored safely and retrieved safely to use. This paper presents an overview of security issues for big data. Big Data encompasses data configuration, distribution and analysis of the data that overcome the drawbacks of traditional data processing technology. Big data manages, stores and acquires data in a speedy and cost-effective manner with the help of tools, technologies and frameworks.

Padmashree, M G, Arunalatha, J S, Venugopal, K R.  2019.  HSSM: High Speed Split Multiplier for Elliptic Curve Cryptography in IoT. 2019 Fifteenth International Conference on Information Processing (ICINPRO). :1—5.

Security of data in the Internet of Things (IoT) deals with Encryption to provide a stable secure system. The IoT device possess a constrained Main Memory and Secondary Memory that mandates the use of Elliptic Curve Cryptographic (ECC) scheme. The Scalar Multiplication has a great impact on the ECC implementations in reducing the Computation and Space Complexity, thereby enhancing the performance of an IoT System providing high Security and Privacy. The proposed High Speed Split Multiplier (HSSM) for ECC in IoT is a lightweight Multiplication technique that uses Split Multiplication with Pseudo-Mersenne Prime Number and Montgomery Curve to withstand the Power Analysis Attack. The proposed algorithm reduces the Computation Time and the Space Complexity of the Cryptographic operations in terms of Clock cycles and RAM when compared with Liu et al.,’s multiplication algorithms [1].

Elhassani, M., Chillali, A., Mouhib, A..  2019.  Elliptic curve and Lattice cryptosystem. 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS). :1—4.

In this work, we will present a new hybrid cryptography method based on two hard problems: 1- The problem of the discrete logarithm on an elliptic curve defined on a finite local ring. 2- The closest vector problem in lattice and the conjugate problem on square matrices. At first, we will make the exchange of keys to the Diffie-Hellman. The encryption of a message is done with a bad basis of a lattice.

Pandey, Jai Gopal, Mitharwal, Chhavi, Karmakar, Abhijit.  2019.  An RNS Implementation of the Elliptic Curve Cryptography for IoT Security. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :66—72.

Public key cryptography plays a vital role in many information and communication systems for secure data transaction, authentication, identification, digital signature, and key management purpose. Elliptic curve cryptography (ECC) is a widely used public key cryptographic algorithm. In this paper, we propose a hardware-software codesign implementation of the ECC cipher. The algorithm is modelled in C language. Compute-intensive components are identified for their efficient hardware implementations. In the implementation, residue number system (RNS) with projective coordinates are utilized for performing the required arithmetic operations. To manage the hardware-software codeign in an integrated fashion Xilinx platform studio tool and Virtex-5 xc5vfx70t device based platform is utilized. An application of the implementation is demonstrated for encryption of text and its respective decryption over prime fields. The design is useful for providing an adequate level of security for IoTs.

Bedoui, Mouna, Bouallegue, Belgacem, Hamdi, Belgacem, Machhout, Mohsen.  2019.  An Efficient Fault Detection Method for Elliptic Curve Scalar Multiplication Montgomery Algorithm. 2019 IEEE International Conference on Design Test of Integrated Micro Nano-Systems (DTS). :1—5.

Elliptical curve cryptography (ECC) is being used more and more in public key cryptosystems. Its main advantage is that, at a given security level, key sizes are much smaller compared to classical asymmetric cryptosystems like RSA. Smaller keys imply less power consumption, less cryptographic computation and require less memory. Besides performance, security is another major problem in embedded devices. Cryptosystems, like ECC, that are considered mathematically secure, are not necessarily considered safe when implemented in practice. An attacker can monitor these interactions in order to mount attacks called fault attacks. A number of countermeasures have been developed to protect Montgomery Scalar Multiplication algorithm against fault attacks. In this work, we proposed an efficient countermeasure premised on duplication scheme and the scrambling technique for Montgomery Scalar Multiplication algorithm against fault attacks. Our approach is simple and easy to hardware implementation. In addition, we perform injection-based error simulations and demonstrate that the error coverage is about 99.996%.

Babenko, Mikhail, Redvanov, Aziz Salimovich, Deryabin, Maxim, Chervyakov, Nikolay, Nazarov, Anton, Al-Galda, Safwat Chiad, Vashchenko, Irina, Dvoryaninova, Inna, Nepretimova, Elena.  2019.  Efficient Implementation of Cryptography on Points of an Elliptic Curve in Residue Number System. 2019 International Conference on Engineering and Telecommunication (EnT). :1—5.

The article explores the question of the effective implementation of arithmetic operations with points of an elliptic curve given over a prime field. Given that the basic arithmetic operations with points of an elliptic curve are the operations of adding points and doubling points, we study the question of implementing the arithmetic operations of adding and doubling points in various coordinate systems using the weighted number system and using the Residue Number System (RNS). We have shown that using the fourmodule RNS allows you to get an average gain for the operation of adding points of the elliptic curve of 8.67% and for the operation of doubling the points of the elliptic curve of 8.32% compared to the implementation using the operation of modular multiplication with special moduli from NIST FIPS 186.

2020-06-22
Long, Yihong, Cheng, Minyang.  2019.  Secret Sharing Based SM2 Digital Signature Generation using Homomorphic Encryption. 2019 15th International Conference on Computational Intelligence and Security (CIS). :252–256.
SM2 is an elliptic curve public key cryptography algorithm released by the State Cryptography Administration of China. It includes digital signature, data encryption and key exchange schemes. To meet specific application requirements, such as to protect the user's private key in software only implementation, and to facilitate secure cloud cryptography computing, secret sharing based SM2 signature generation schemes have been proposed in the literature. In this paper a new such kind of scheme based upon additively homomorphic encryption is proposed. The proposed scheme overcomes the drawback that the existing schemes have and is more secure. It is useful in various application scenarios.
2020-06-08
Elhassani, Mustapha, Boulbot, Aziz, Chillali, Abdelhakim, Mouhib, Ali.  2019.  Fully homomorphic encryption scheme on a nonCommutative ring R. 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS). :1–4.
This article is an introduction to a well known problem on the ring Fq[e] where e3=e2: Fully homomorphic encryption scheme. In this paper, we introduce a new diagram of encryption based on the conjugate problem on Fq[e] , (ESR(Fq[e])).
2020-04-20
Zaw, Than Myo, Thant, Min, Bezzateev, S. V..  2019.  Database Security with AES Encryption, Elliptic Curve Encryption and Signature. 2019 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). :1–6.

A database is an organized collection of data. Though a number of techniques, such as encryption and electronic signatures, are currently available for the protection of data when transmitted across sites. Database security refers to the collective measures used to protect and secure a database or database management software from illegitimate use and malicious threats and attacks. In this paper, we create 6 types of method for more secure ways to store and retrieve database information that is both convenient and efficient. Confidentiality, integrity, and availability, also known as the CIA triad, is a model designed to guide policies for information security within the database. There are many cryptography techniques available among them, ECC is one of the most powerful techniques. A user wants to the data stores or request, the user needs to authenticate. When a user who is authenticated, he will get key from a key generator and then he must be data encrypt or decrypt within the database. Every keys store in a key generator and retrieve from the key generator. We use 256 bits of AES encryption for rows level encryption, columns level encryption, and elements level encryption for the database. Next two method is encrypted AES 256 bits random key by using 521 bits of ECC encryption and signature for rows level encryption and column level encryption. Last method is most secure method in this paper, which method is element level encryption with AES and ECC encryption for confidentiality and ECC signature use for every element within the database for integrity. As well as encrypting data at rest, it's also important to ensure confidential data are encrypted in motion over our network to protect against database signature security. The advantages of elements level are difficult for attack because the attacker gets a key that is lose only one element. The disadvantages need to thousands or millions of keys to manage.

Gupta, Himanshu, Mondal, Subhash, Ray, Srayan, Giri, Biswajit, Majumdar, Rana, Mishra, Ved P.  2019.  Impact of SQL Injection in Database Security. 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). :296–299.
In today's world web applications have become an instant means for information broadcasting. At present, man has become so dependent on web applications that everything done through electronic means like e-banking, e-shopping, online payment of bills etc. Due to an unauthorized admittance might threat customer's or user's confidentiality, integrity and authority. SQL injection considered as most Spartan dangerous coercions to the databases of web applications. current scenario databases are highly susceptible to SQL Injection[4] . SQL Injection is one of the most popular and dangerous hacking or cracking technique . In this work authors projected a novel approach to mitigate SQL Injection Attacks in a database. We have illustrated a technique or method prevent SQLIA by incorporating a hybrid encryption in form of Advanced Encryption Standard (AES) and Elliptical Curve Cryptography (ECC) [5]. In this research paper integrated approach of encryption method is followed to prevent the databases of the web applications against SQL Injection Attack. Incidentally if an invader gains access to the database, then it can cause severe damage and ends up with retrieves data or information. So to prevent these type of attacks a combined approach is projected , Advanced Encryption Standard (AES) at login phase to prevent the unauthorized access to databases and on the other hand Elliptical Curve Cryptography (ECC) to encode the database so that without the key no one can access the database information [3]. This research paper illustrates the technique to prevent SQL Injection Attack.
2020-04-03
Lipp, Benjamin, Blanchet, Bruno, Bhargavan, Karthikeyan.  2019.  A Mechanised Cryptographic Proof of the WireGuard Virtual Private Network Protocol. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :231—246.

WireGuard is a free and open source Virtual Private Network (VPN) that aims to replace IPsec and OpenVPN. It is based on a new cryptographic protocol derived from the Noise Protocol Framework. This paper presents the first mechanised cryptographic proof of the protocol underlying WireGuard, using the CryptoVerif proof assistant. We analyse the entire WireGuard protocol as it is, including transport data messages, in an ACCE-style model. We contribute proofs for correctness, message secrecy, forward secrecy, mutual authentication, session uniqueness, and resistance against key compromise impersonation, identity mis-binding, and replay attacks. We also discuss the strength of the identity hiding provided by WireGuard. Our work also provides novel theoretical contributions that are reusable beyond WireGuard. First, we extend CryptoVerif to account for the absence of public key validation in popular Diffie-Hellman groups like Curve25519, which is used in many modern protocols including WireGuard. To our knowledge, this is the first mechanised cryptographic proof for any protocol employing such a precise model. Second, we prove several indifferentiability lemmas that are useful to simplify the proofs for sequences of key derivations.

2020-03-23
Wang, Song, Zhang, Bo.  2019.  Research on RFID Information Security Technology Based on Elliptic Curve Algorithms. 2019 International Conference on Communications, Information System and Computer Engineering (CISCE). :386–389.
The security problem of RFID system is a great potential security hazard in its application. Due to the limitation of hardware conditions, traditional public key cryptography can not be directly used in security mechanism. Compared with the traditional RSA public key cryptography, the elliptic curve cryptography has the advantages of shorter key, faster processing speed and smaller storage space, which is very suitable for use in the RFID system.
2020-03-16
Nguyen-Van, Thanh, Nguyen-Anh, Tuan, Le, Tien-Dat, Nguyen-Ho, Minh-Phuoc, Nguyen-Van, Tuong, Le, Nhat-Quang, Nguyen-An, Khuong.  2019.  Scalable Distributed Random Number Generation Based on Homomorphic Encryption. 2019 IEEE International Conference on Blockchain (Blockchain). :572–579.

Generating a secure source of publicly-verifiable randomness could be the single most fundamental technical challenge on a distributed network, especially in the blockchain context. Many current proposals face serious problems of scalability and security issues. We present a protocol which can be implemented on a blockchain that ensures unpredictable, tamper-resistant, scalable and publicly-verifiable outcomes. The main building blocks of our protocol are homomorphic encryption (HE) and verifiable random functions (VRF). The use of homomorphic encryption enables mathematical operations to be performed on encrypted data, to ensure no one knows the outcome prior to being generated. The protocol requires O(n) elliptic curve multiplications and additions as well as O(n) signature signing and verification operations, which permits great scalability. We present a comparison between recent approaches to the generation of random beacons.

2020-02-17
Alfaleh, Faleh, Alfehaid, Haitham, Alanzy, Mohammed, Elkhediri, Salim.  2019.  Wireless Sensor Networks Security: Case study. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–4.
Wireless Sensor Networks (WSNs) are important and becoming more important as we integrate wireless sensor networks and the internet with different things, which has changed our life, and it is affected everywhere in our life like shopping, storage, live monitoring, smart home etc., called Internet of Things (IoT), as any use of the network physical devices that included in electronics, software, sensors, actuators, and connectivity which makes available these things to connect, collect and exchange data, and the most importantly thing is the accuracy of the data that has been collected in the Internet of Things, detecting sensor data with faulty readings is an important issue of secure communication and power consumption. So, requirement of energy-efficiency and integrity of information is mandatory.
2020-01-20
Pillutla, Siva Ramakrishna, Boppana, Lakshmi.  2019.  A high-throughput fully digit-serial polynomial basis finite field \$\textbackslashtextGF(2ˆm)\$ multiplier for IoT applications. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :920–924.

The performance of many data security and reliability applications depends on computations in finite fields \$\textbackslashtextGF (2ˆm)\$. In finite field arithmetic, field multiplication is a complex operation and is also used in other operations such as inversion and exponentiation. By considering the application domain needs, a variety of efficient algorithms and architectures are proposed in the literature for field \$\textbackslashtextGF (2ˆm)\$ multiplier. With the rapid emergence of Internet of Things (IoT) and Wireless Sensor Networks (WSN), many resource-constrained devices such as IoT edge devices and WSN end nodes came into existence. The data bus width of these constrained devices is typically smaller. Digit-level architectures which can make use of the full data bus are suitable for these devices. In this paper, we propose a new fully digit-serial polynomial basis finite field \$\textbackslashtextGF (2ˆm)\$ multiplier where both the operands enter the architecture concurrently at digit-level. Though there are many digit-level multipliers available for polynomial basis multiplication in the literature, it is for the first time to propose a fully digit-serial polynomial basis multiplier. The proposed multiplication scheme is based on the multiplication scheme presented in the literature for a redundant basis multiplication. The proposed polynomial basis multiplication results in a high-throughput architecture. This multiplier is applicable for a class of trinomials, and this class of irreducible polynomials is highly desirable for IoT edge devices since it allows the least area and time complexities. The proposed multiplier achieves better throughput when compared with previous digit-level architectures.