Visible to the public Biblio

Filters: Keyword is vulnerabilities  [Clear All Filters]
2023-09-20
Haidros Rahima Manzil, Hashida, Naik S, Manohar.  2022.  DynaMalDroid: Dynamic Analysis-Based Detection Framework for Android Malware Using Machine Learning Techniques. 2022 International Conference on Knowledge Engineering and Communication Systems (ICKES). :1—6.
Android malware is continuously evolving at an alarming rate due to the growing vulnerabilities. This demands more effective malware detection methods. This paper presents DynaMalDroid, a dynamic analysis-based framework to detect malicious applications in the Android platform. The proposed framework contains three modules: dynamic analysis, feature engineering, and detection. We utilized the well-known CICMalDroid2020 dataset, and the system calls of apps are extracted through dynamic analysis. We trained our proposed model to recognize malware by selecting features obtained through the feature engineering module. Further, with these selected features, the detection module applies different Machine Learning classifiers like Random Forest, Decision Tree, Logistic Regression, Support Vector Machine, Naïve-Bayes, K-Nearest Neighbour, and AdaBoost, to recognize whether an application is malicious or not. The experiments have shown that several classifiers have demonstrated excellent performance and have an accuracy of up to 99%. The models with Support Vector Machine and AdaBoost classifiers have provided better detection accuracy of 99.3% and 99.5%, respectively.
2023-02-17
Khan, Muhammad Maaz Ali, Ehabe, Enow Nkongho, Mailewa, Akalanka B..  2022.  Discovering the Need for Information Assurance to Assure the End Users: Methodologies and Best Practices. 2022 IEEE International Conference on Electro Information Technology (eIT). :131–138.

The use of software to support the information infrastructure that governments, critical infrastructure providers and businesses worldwide rely on for their daily operations and business processes is gradually becoming unavoidable. Commercial off-the shelf software is widely and increasingly used by these organizations to automate processes with information technology. That notwithstanding, cyber-attacks are becoming stealthier and more sophisticated, which has led to a complex and dynamic risk environment for IT-based operations which users are working to better understand and manage. This has made users become increasingly concerned about the integrity, security and reliability of commercial software. To meet up with these concerns and meet customer requirements, vendors have undertaken significant efforts to reduce vulnerabilities, improve resistance to attack and protect the integrity of the products they sell. These efforts are often referred to as “software assurance.” Software assurance is becoming very important for organizations critical to public safety and economic and national security. These users require a high level of confidence that commercial software is as secure as possible, something only achieved when software is created using best practices for secure software development. Therefore, in this paper, we explore the need for information assurance and its importance for both organizations and end users, methodologies and best practices for software security and information assurance, and we also conducted a survey to understand end users’ opinions on the methodologies researched in this paper and their impact.

ISSN: 2154-0373

2022-12-23
Thapa, Ria, Sehl, Bhavya, Gupta, Suryaansh, Goyal, Ankur.  2022.  Security of operating system using the Metasploit framework by creating a backdoor from remote setup. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :2618–2622.
The era of technology has seen many rising inventions and with that rise, comes the need to secure our systems. In this paper we have discussed how the old generation of people are falling behind at being updated in tandem with technology, and losing track of the knowledge required to process the same. In addition this factor leads to leakage of critical personal information. This paper throws light upon the steps taken in order to exploit the pre-existing operating system, Windows 7, Ultimate, using a ubiquitous framework used by everyone, i.e. Metasploit. It involves installation of a backdoor on the victim machine, from a remote setup, mostly Kali Linux operating machine. This backdoor allows the attackers to create executable files and deploy them in the windows system to gain access on the machine, remotely. After gaining access, manipulation of sensitive data becomes easy. Access to the admin rights of any system is a red alert because it means that some outsider has intense access to personal information of a human being and since data about someone explains a lot of things about them. It basically is exposing and human hate that. It depraves one of their personal identity. Therefore security is not something that should be taken lightly. It is supposed to be dealt with utmost care.
2022-11-18
Paramitha, Ranindya, Asnar, Yudistira Dwi Wardhana.  2021.  Static Code Analysis Tool for Laravel Framework Based Web Application. 2021 International Conference on Data and Software Engineering (ICoDSE). :1–6.
To increase and maintain web application security, developers could use some different methods, one of them is static code analysis. This method could find security vulnerabilities inside a source code without the need of running the program. It could also be automated by using tools, which considered more efficient than manual reviews. One specific method which is commonly used in static code analysis is taint analysis. Taint analysis usually utilizes source code modeling to prepare the code for analysis process to detect any untrusted data flows into security sensitives computations. While this kind of analysis could be very helpful, static code analysis tool for Laravel-based web application is still quite rare, despite its popularity. Therefore, in this research, we want to know how static code (taint) analysis could be utilized to detect security vulnerabilities and how the projects (Laravel-based) should be modeled in order to facilitate this analysis. We then developed a static analysis tool, which models the application’s source code using AST and dictionary to be used as the base of the taint analysis. The tool first parsed the route file of Laravel project to get a list of controller files. Each file in that list would be parsed in order to build the source code representation, before actually being analyzed using taint analysis method. The experiments was done using this tool shows that the tools (with taint analysis) could detect 13 security vulnerabilities from 6 Laravel-based projects with one False Negative. An ineffective sanitizer was the suspected cause of this False Negative. This also shows that proposed modeling technique could be helpful in facilitating taint analysis in Laravel-based projects. For future development and studies, this tool should be tested with more Laravel and even other framework based web application with a wider range of security vulnerabilities.
2022-09-29
Al-Alawi, Adel Ismail, Alsaad, Abdulla Jalal, AlAlawi, Ebtesam Ismaeel, Naser Al-Hadad, Ahmed Abdulla.  2021.  The Analysis of Human Attitude toward Cybersecurity Information Sharing. 2021 International Conference on Decision Aid Sciences and Application (DASA). :947–956.
Over the years, human errors have been identified as one of the most critical factors impacting cybersecurity in an organization that has had a substantial impact. The research uses recent articles published on human resources and information cybersecurity. This research focuses on the vulnerabilities and the best solution to mitigate these threats based on literature review methodology. The study also focuses on identifying the human attitude and behavior towards cybersecurity and how that would impact the organization's financial impact. With the help of the Two-factor Taxonomy of the security behavior model developed in past research, the research aims to identify the best practices and compare the best practices with that of the attitude-behavior found and matched to the model. Finally, the study would compare the difference between best practices and the current practices from the model. This would help provide the organization with specific recommendations that would help change their attitude and behavior towards cybersecurity and ensure the organization is not fearful of the cyber threat of human error threat.
2022-05-19
Shimchik, N. V., Ignatyev, V. N., Belevantsev, A. A..  2021.  Improving Accuracy and Completeness of Source Code Static Taint Analysis. 2021 Ivannikov Ispras Open Conference (ISPRAS). :61–68.

Static analysis is a general name for various methods of program examination without actually executing it. In particular, it is widely used to discover errors and vulnerabilities in software. Taint analysis usually denotes the process of checking the flow of user-provided data in the program in order to find potential vulnerabilities. It can be performed either statically or dynamically. In the paper we evaluate several improvements for the static taint analyzer Irbis [1], which is based on a special case of interprocedural graph reachability problem - the so-called IFDS problem, originally proposed by Reps et al. [2]. The analyzer is currently being developed at the Ivannikov Institute for System Programming of the Russian Academy of Sciences (ISP RAS). The evaluation is based on several real projects with known vulnerabilities and a subset of the Juliet Test Suite for C/C++ [3]. The chosen subset consists of more than 5 thousand tests for 11 different CWEs.

2022-04-20
Bhattacharjee, Arpan, Badsha, Shahriar, Hossain, Md Tamjid, Konstantinou, Charalambos, Liang, Xueping.  2021.  Vulnerability Characterization and Privacy Quantification for Cyber-Physical Systems. 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing Communications (GreenCom) and IEEE Cyber, Physical Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :217–223.
Cyber-physical systems (CPS) data privacy protection during sharing, aggregating, and publishing is a challenging problem. Several privacy protection mechanisms have been developed in the literature to protect sensitive data from adversarial analysis and eliminate the risk of re-identifying the original properties of shared data. However, most of the existing solutions have drawbacks, such as (i) lack of a proper vulnerability characterization model to accurately identify where privacy is needed, (ii) ignoring data providers privacy preference, (iii) using uniform privacy protection which may create inadequate privacy for some provider while over-protecting others, and (iv) lack of a comprehensive privacy quantification model assuring data privacy-preservation. To address these issues, we propose a personalized privacy preference framework by characterizing and quantifying the CPS vulnerabilities as well as ensuring privacy. First, we introduce a Standard Vulnerability Profiling Library (SVPL) by arranging the nodes of an energy-CPS from maximum to minimum vulnerable based on their privacy loss. Based on this model, we present our personalized privacy framework (PDP) in which Laplace noise is added based on the individual node's selected privacy preferences. Finally, combining these two proposed methods, we demonstrate that our privacy characterization and quantification model can attain better privacy preservation by eliminating the trade-off between privacy, utility, and risk of losing information.
2022-04-18
Bothos, Ioannis, Vlachos, Vasileios, Kyriazanos, Dimitris M., Stamatiou, Ioannis, Thanos, Konstantinos Georgios, Tzamalis, Pantelis, Nikoletseas, Sotirios, Thomopoulos, Stelios C.A..  2021.  Modelling Cyber-Risk in an Economic Perspective. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :372–377.
In this paper, we present a theoretical approach concerning the econometric modelling for the estimation of cyber-security risk, with the use of time-series analysis methods and alternatively with Machine Learning (ML) based, deep learning methodology. Also we present work performed in the framework of SAINT H2020 Project [1], concerning innovative data mining techniques, based on automated web scrapping, for the retrieving of the relevant time-series data. We conclude with a review of emerging challenges in cyber-risk assessment brought by the rapid development of adversarial AI.
2022-03-14
Sabev, Evgeni, Trifonov, Roumen, Pavlova, Galya, Rainova, Kamelia.  2021.  Cybersecurity Analysis of Wind Farm SCADA Systems. 2021 International Conference on Information Technologies (InfoTech). :1—5.
Industry 4.0 or also known as the fourth industrial revolution poses a great cybersecurity risk for Supervisory control and data acquisition (SCADA) systems. Nowadays, lots of enterprises have turned into renewable energy and are changing the energy dependency to be on wind power. The SCADA systems are often vulnerable against different kinds of cyberattacks and thus allowing intruders to successfully and intrude exfiltrate different wind farm SCADA systems. During our research a future concept testbed of a wind farm SCADA system is going to be introduced. The already existing real-world vulnerabilities that are identified are later on going to be demonstrated against the test SCADA wind farm system.
2021-12-20
Mikhailova, Vasilisa D., Shulika, Maria G., Basan, Elena S., Peskova, Olga Yu..  2021.  Security architecture for UAV. 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :0431–0434.
Cyber-physical systems are used in many areas of human life. But people do not pay enough attention to ensuring the security of these systems. As a result of the resulting security gaps, an attacker can launch an attack, not only shutting down the system, but also having some negative impact on the environment. The article examines denial of service attacks in ad-hoc networks, conducts experiments and considers the consequences of their successful execution. As a result of the research, it was determined that an attack can be detected by changes in transmitted traffic and processor load. The cyber-physical system operates on stable algorithms, and even if legal changes occur, they can be easily distinguished from those caused by the attack. The article shows that the use of statistical methods for analyzing traffic and other parameters can be justified for detecting an attack. This study shows that each attack affects traffic in its own way and creates unique patterns of behavior change. The experiments were carried out according to methodology with changings in the intensity of the attacks, with a change in normal behavior. The results of this study can further be used to implement a system for detecting attacks on cyber-physical systems. The collected datasets can be used to train the neural network.
2021-11-30
Marah, Rim, Gabassi, Inssaf El, Larioui, Sanae, Yatimi, Hanane.  2020.  Security of Smart Grid Management of Smart Meter Protection. 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). :1–5.
The need of more secured and environmental energy is becoming a necessity and priority in an environment suffering from serious problems due to technological development. Since the Smart Grid is a promising alternative that supports green energy and enhances a better management of electricity, the security side has became one of the major and critical associated issues in building the communication network in the microgrid.In this paper we will present the Smart Grid Cyber security challenges and propose a distributed algorithm that face one of the biggest problems threatening the smart grid which is fires.
2021-07-28
Mell, Peter, Gueye, Assane.  2020.  A Suite of Metrics for Calculating the Most Significant Security Relevant Software Flaw Types. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :511—516.
The Common Weakness Enumeration (CWE) is a prominent list of software weakness types. This list is used by vulnerability databases to describe the underlying security flaws within analyzed vulnerabilities. This linkage opens the possibility of using the analysis of software vulnerabilities to identify the most significant weaknesses that enable those vulnerabilities. We accomplish this through creating mashup views combining CWE weakness taxonomies with vulnerability analysis data. The resulting graphs have CWEs as nodes, edges derived from multiple CWE taxonomies, and nodes adorned with vulnerability analysis information (propagated from children to parents). Using these graphs, we develop a suite of metrics to identify the most significant weakness types (using the perspectives of frequency, impact, exploitability, and overall severity).
2021-06-24
Abirami, R., Wise, D. C. Joy Winnie, Jeeva, R., Sanjay, S..  2020.  Detecting Security Vulnerabilities in Website using Python. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :844–846.
On the current website, there are many undeniable conditions and there is the existence of new plot holes. If data link is normally extracted on each of the websites, it becomes difficult to evaluate each vulnerability, with tolls such as XS S, SQLI, and other such existing tools for vulnerability assessment. Integrated testing criteria for vulnerabilities are met. In addition, the response should be automated and systematic. The primary value of vulnerability Buffer will be made of predefined and self-formatted code written in python, and the software is automated to send reports to their respective users. The vulnerabilities are tried to be classified as accessible. OWASP is the main resource for developing and validating web security processes.
Teplyuk, P.A., Yakunin, A.G., Sharlaev, E.V..  2020.  Study of Security Flaws in the Linux Kernel by Fuzzing. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1–5.
An exceptional feature of the development of modern operating systems based on the Linux kernel is their leading use in cloud technologies, mobile devices and the Internet of things, which is accompanied by the emergence of more and more security threats at the kernel level. In order to improve the security of existing and future Linux distributions, it is necessary to analyze the existing approaches and tools for automated vulnerability detection and to conduct experimental security testing of some current versions of the kernel. The research is based on fuzzing - a software testing technique, which consists in the automated detection of implementation errors by sending deliberately incorrect data to the input of the fuzzer and analyzing the program's response at its output. Using the Syzkaller software tool, which implements a code coverage approach, vulnerabilities of the Linux kernel level were identified in stable versions used in modern distributions. The direction of this research is relevant and requires further development in order to detect zero-day vulnerabilities in new versions of the kernel, which is an important and necessary link in increasing the security of the Linux operating system family.
2021-06-01
Chandrasekaran, Selvamani, Ramachandran, K.I., Adarsh, S., Puranik, Ashish Kumar.  2020.  Avoidance of Replay attack in CAN protocol using Authenticated Encryption. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—6.
Controller Area Network is the prominent communication protocol in automotive systems. Its salient features of arbitration, message filtering, error detection, data consistency and fault confinement provide robust and reliable architecture. Despite of this, it lacks security features and is vulnerable to many attacks. One of the common attacks over the CAN communication is the replay attack. It can happen even after the implementation of encryption or authentication. This paper proposes a methodology of supressing the replay attacks by implementing authenticated encryption embedded with timestamp and pre-shared initialisation vector as a primary key. The major advantage of this system is its flexibility and configurability nature where in each layer can be chosen with the help of cryptographic algorithms to up to the entire size of the keys.
2021-04-27
Kuk, K., Milić, P., Denić, S..  2020.  Object-oriented software metrics in software code vulnerability analysis. 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA). :1—6.

Development of quality object-oriented software contains security as an integral aspect of that process. During that process, a ceaseless burden on the developers was posed in order to maximize the development and at the same time to reduce the expense and time invested in security. In this paper, the authors analyzed metrics for object-oriented software in order to evaluate and identify the relation between metric value and security of the software. Identification of these relations was achieved by study of software vulnerabilities with code level metrics. By using OWASP classification of vulnerabilities and experimental results, we proved that there was relation between metric values and possible security issues in software. For experimental code analysis, we have developed special software called SOFTMET.

Matthews, I., Mace, J., Soudjani, S., Moorsel, A. van.  2020.  Cyclic Bayesian Attack Graphs: A Systematic Computational Approach. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :129–136.
Attack graphs are commonly used to analyse the security of medium-sized to large networks. Based on a scan of the network and likelihood information of vulnerabilities, attack graphs can be transformed into Bayesian Attack Graphs (BAGs). These BAGs are used to evaluate how security controls affect a network and how changes in topology affect security. A challenge with these automatically generated BAGs is that cycles arise naturally, which make it impossible to use Bayesian network theory to calculate state probabilities. In this paper we provide a systematic approach to analyse and perform computations over cyclic Bayesian attack graphs. We present an interpretation of Bayesian attack graphs based on combinational logic circuits, which facilitates an intuitively attractive systematic treatment of cycles. We prove properties of the associated logic circuit and present an algorithm that computes state probabilities without altering the attack graphs (e.g., remove an arc to remove a cycle). Moreover, our algorithm deals seamlessly with any cycle without the need to identify their type. A set of experiments demonstrates the scalability of the algorithm on computer networks with hundreds of machines, each with multiple vulnerabilities.
2021-03-15
Wang, B., Dou, Y., Sang, Y., Zhang, Y., Huang, J..  2020.  IoTCMal: Towards A Hybrid IoT Honeypot for Capturing and Analyzing Malware. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—7.

Nowadays, the emerging Internet-of-Things (IoT) emphasize the need for the security of network-connected devices. Additionally, there are two types of services in IoT devices that are easily exploited by attackers, weak authentication services (e.g., SSH/Telnet) and exploited services using command injection. Based on this observation, we propose IoTCMal, a hybrid IoT honeypot framework for capturing more comprehensive malicious samples aiming at IoT devices. The key novelty of IoTC-MAL is three-fold: (i) it provides a high-interactive component with common vulnerable service in real IoT device by utilizing traffic forwarding technique; (ii) it also contains a low-interactive component with Telnet/SSH service by running in virtual environment. (iii) Distinct from traditional low-interactive IoT honeypots[1], which only analyze family categories of malicious samples, IoTCMal primarily focuses on homology analysis of malicious samples. We deployed IoTCMal on 36 VPS1 instances distributed in 13 cities of 6 countries. By analyzing the malware binaries captured from IoTCMal, we discover 8 malware families controlled by at least 11 groups of attackers, which mainly launched DDoS attacks and digital currency mining. Among them, about 60% of the captured malicious samples ran in ARM or MIPs architectures, which are widely used in IoT devices.

2021-02-03
Ceron, J. M., Scholten, C., Pras, A., Santanna, J..  2020.  MikroTik Devices Landscape, Realistic Honeypots, and Automated Attack Classification. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—9.

In 2018, several malware campaigns targeted and succeed to infect millions of low-cost routers (malwares e.g., VPN-Filter, Navidade, and SonarDNS). These routers were used, then, for all sort of cybercrimes: from DDoS attacks to ransomware. MikroTik routers are a peculiar example of low-cost routers. These routers are used to provide both last mile access to home users and are used in core network infrastructure. Half of the core routers used in one of the biggest Internet exchanges in the world are MikroTik devices. The problem is that vulnerable firmwares (RouterOS) used in homeusers houses are also used in core networks. In this paper, we are the first to quantify the problem that infecting MikroTik devices would pose to the Internet. Based on more than 4 TB of data, we reveal more than 4 million MikroTik devices in the world. Then, we propose an easy-to-deploy MikroTik honeypot and collect more than 17 millions packets, in 45 days, from sensors deployed in Australia, Brazil, China, India, Netherlands, and the United States. Finally, we use the collected data from our honeypots to automatically classify and assess attacks tailored to MikroTik devices. All our source-codes and analysis are publicly available. We believe that our honeypots and our findings in this paper foster security improvements in MikroTik devices worldwide.

2020-12-17
Basan, E., Gritsynin, A., Avdeenko, T..  2019.  Framework for Analyzing the Security of Robot Control Systems. 2019 International Conference on Information Systems and Computer Science (INCISCOS). :354—360.

The purpose of this work is to analyze the security model of a robotized system, to analyze the approaches to assessing the security of this system, and to develop our own framework. The solution to this problem involves the use of developed frameworks. The analysis will be conducted on a robotic system of robots. The prefix structures assume that the robotic system is divided into levels, and after that it is necessary to directly protect each level. Each level has its own characteristics and drawbacks that must be considered when developing a security system for a robotic system.

Basheer, M. M., Varol, A..  2019.  An Overview of Robot Operating System Forensics. 2019 1st International Informatics and Software Engineering Conference (UBMYK). :1—4.
Autonomous technologies have been rapidly replacing the traditional manual intervention nearly in every aspect of our life. These technologies essentially require robots to carry out their automated processes. Nowadays, with the emergence of industry 4.0, robots are increasingly being remote-controlled via client-server connection, which creates uncommon vulnerabilities that allow attackers to target those robots. The development of an open source operational environment for robots, known as Robot Operating System (ROS) has come as a response to these demands. Security and privacy are crucial for the use of ROS as the chance of a compromise may lead to devastating ramifications. In this paper, an overview of ROS and the attacks targeting it are detailed and discussed. Followed by a review of the ROS security and digital investigation studies.
2020-12-07
Lemes, C. I., Naessens, V., Vieira, M..  2019.  Trustworthiness Assessment of Web Applications: Approach and Experimental Study using Input Validation Coding Practices. 2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE). :435–445.
The popularity of web applications and their world-wide use to support business critical operations raised the interest of hackers on exploiting security vulnerabilities to perform malicious operations. Fostering trust calls for assessment techniques that provide indicators about the quality of a web application from a security perspective. This paper studies the problem of using coding practices to characterize the trustworthiness of web applications from a security perspective. The hypothesis is that applying feasible security practices results in applications having a reduced number of unknown vulnerabilities, and can therefore be considered more trustworthy. The proposed approach is instantiated for the concrete case of input validation practices, and includes a Quality Model to compute trustworthiness scores that can be used to compare different applications or different code elements in the same application. Experimental results show that the higher scores are obtained for more secure code, suggesting that it can be used in practice to characterize trustworthiness, also providing guidance to compare and/or improve the security of web applications.
2020-11-16
Belesioti, M., Makri, R., Fehling-Kaschek, M., Carli, M., Kostopoulos, A., Chochliouros, I. P., Neri, A., Frosali, F..  2019.  A New Security Approach in Telecom Infrastructures: The RESISTO Concept. 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS). :212–218.
Communications play a fundamental role in the economic and social well-being of the citizens and on operations of most of the critical infrastructures (CIs). Extreme weather events, natural disasters and criminal attacks represent a challenge due to their increase in frequency and intensity requiring smarter resilience of the Communication CIs, which are extremely vulnerable due to the ever-increasing complexity of the architecture also in light of the evolution towards 5G, the extensive use of programmable platforms and exponential growth of connected devices. In this paper, we present the aim of RESISTO H2020 EU-funded project, which constitutes an innovative solution for Communication CIs holistic situation awareness and enhanced resilience.
2020-11-04
Sultana, K. Z., Williams, B. J., Bosu, A..  2018.  A Comparison of Nano-Patterns vs. Software Metrics in Vulnerability Prediction. 2018 25th Asia-Pacific Software Engineering Conference (APSEC). :355—364.

Context: Software security is an imperative aspect of software quality. Early detection of vulnerable code during development can better ensure the security of the codebase and minimize testing efforts. Although traditional software metrics are used for early detection of vulnerabilities, they do not clearly address the granularity level of the issue to precisely pinpoint vulnerabilities. The goal of this study is to employ method-level traceable patterns (nano-patterns) in vulnerability prediction and empirically compare their performance with traditional software metrics. The concept of nano-patterns is similar to design patterns, but these constructs can be automatically recognized and extracted from source code. If nano-patterns can better predict vulnerable methods compared to software metrics, they can be used in developing vulnerability prediction models with better accuracy. Aims: This study explores the performance of method-level patterns in vulnerability prediction. We also compare them with method-level software metrics. Method: We studied vulnerabilities reported for two major releases of Apache Tomcat (6 and 7), Apache CXF, and two stand-alone Java web applications. We used three machine learning techniques to predict vulnerabilities using nano-patterns as features. We applied the same techniques using method-level software metrics as features and compared their performance with nano-patterns. Results: We found that nano-patterns show lower false negative rates for classifying vulnerable methods (for Tomcat 6, 21% vs 34.7%) and therefore, have higher recall in predicting vulnerable code than the software metrics used. On the other hand, software metrics show higher precision than nano-patterns (79.4% vs 76.6%). Conclusion: In summary, we suggest developers use nano-patterns as features for vulnerability prediction to augment existing approaches as these code constructs outperform standard metrics in terms of prediction recall.

2020-10-26
Astaburuaga, Ignacio, Lombardi, Amee, La Torre, Brian, Hughes, Carolyn, Sengupta, Shamik.  2019.  Vulnerability Analysis of AR.Drone 2.0, an Embedded Linux System. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0666–0672.
The goal of this work was to identify and try to solve some of the vulnerabilities present in the AR Drone 2.0 by Parrot. The approach was to identify how the system worked, find and analyze vulnerabilities and flaws in the system as a whole and in the software, and find solutions to those problems. Analyzing the results of some tests showed that the system has an open WiFi network and the communication between the controller and the drone are unencrypted. Analyzing the Linux operating system that the drone uses, we see that "Pairing Mode" is the only way the system protects itself from unauthorized control. This is a feature that can be easily bypassed. Port scans reveal that the system has all the ports for its services open and exposed. This makes it susceptible to attacks like DoS and takeover. This research also focuses on some of the software vulnerabilities, such as Busybox that the drone runs. Lastly, this paper discuses some of the possible methods that can be used to secure the drone. These methods include securing the messages via SSH Tunnel, closing unused ports, and re-implementing the software used by the drone and the controller.