Visible to the public Biblio

Found 913 results

Filters: Keyword is computer network security  [Clear All Filters]
2020-01-27
Zhang, Naiji, Jaafar, Fehmi, Malik, Yasir.  2019.  Low-Rate DoS Attack Detection Using PSD Based Entropy and Machine Learning. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :59–62.
The Distributed Denial of Service attack is one of the most common attacks and it is hard to mitigate, however, it has become more difficult while dealing with the Low-rate DoS (LDoS) attacks. The LDoS exploits the vulnerability of TCP congestion-control mechanism by sending malicious traffic at the low constant rate and influence the victim machine. Recently, machine learning approaches are applied to detect the complex DDoS attacks and improve the efficiency and robustness of the intrusion detection system. In this research, the algorithm is designed to balance the detection rate and its efficiency. The detection algorithm combines the Power Spectral Density (PSD) entropy function and Support Vector Machine to detect LDoS traffic from normal traffic. In our solution, the detection rate and efficiency are adjustable based on the parameter in the decision algorithm. To have high efficiency, the detection method will always detect the attacks by calculating PSD-entropy first and compare it with the two adaptive thresholds. The thresholds can efficiently filter nearly 19% of the samples with a high detection rate. To minimize the computational cost and look only for the patterns that are most relevant for detection, Support Vector Machine based machine learning model is applied to learn the traffic pattern and select appropriate features for detection algorithm. The experimental results show that the proposed approach can detect 99.19% of the LDoS attacks and has an O (n log n) time complexity in the best case.
2020-01-21
Fujdiak, Radek, Blazek, Petr, Mlynek, Petr, Misurec, Jiri.  2019.  Developing Battery of Vulnerability Tests for Industrial Control Systems. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.

Nowadays, the industrial control systems (ICS) face many challenges, where security is becoming one of the most crucial. This fact is caused by new connected environment, which brings among new possibilities also new vulnerabilities, threats, or possible attacks. The criminal acts in the ICS area increased over the past years exponentially, which caused the loss of billions of dollars. This also caused classical Intrusion Detection Systems and Intrusion Prevention Systems to evolve in order to protect among IT also ICS networks. However, these systems need sufficient data such as traffic logs, protocol information, attack patterns, anomaly behavior marks and many others. To provide such data, the requirements for the test environment are summarized in this paper. Moreover, we also introduce more than twenty common vulnerabilities across the ICS together with information about possible risk, attack vector (point), possible detection methods and communication layer occurrence. Therefore, the paper might be used as a base-ground for building sufficient data generator for machine learning and artificial intelligence algorithms often used in ICS/IDS systems.

Dong, Xiao, Li, Qianmu, Hou, Jun, Zhang, Jing, Liu, Yaozong.  2019.  Security Risk Control of Water Power Generation Industrial Control Network Based on Attack and Defense Map. 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService). :232–236.

With the latest development of hydroelectric power generation system, the industrial control network system of hydroelectric power generation has undergone the transformation from the dedicated network, using proprietary protocols to an increasingly open network, adopting standard protocols, and increasing integration with hydroelectric power generation system. It generally believed that with the improvement of the smart grid, the future hydroelectric power generation system will rely more on the powerful network system. The general application of standardized communication protocol and intelligent electronic equipment in industrial control network provides a technical guarantee for realizing the intellectualization of hydroelectric power generation system but also brings about the network security problems that cannot be ignored. In order to solve the vulnerability of the system, we analyze and quantitatively evaluate the industrial control network of hydropower generation as a whole, and propose a set of attack and defense strategies. The method of vulnerability assessment with high diversity score proposed by us avoids the indifference of different vulnerability score to the greatest extent. At the same time, we propose an optimal attack and defense decision algorithm, which generates the optimal attack and defense strategy. The work of this paper can distinguish the actual hazards of vulnerable points more effectively.

Zhuang, Yuan, Pang, Qiaoyue, Wei, Min.  2019.  Secure and Fast Multiple Nodes Join Mechanism for IPv6-Based Industrial Wireless Network. 2019 International Conference on Information Networking (ICOIN). :1–6.
More and more industrial devices are expected to connect to the internet seamlessly. IPv6-based industrial wireless network can solve the address resources limitation problem. It is a challenge about how to ensure the wireless node join security after introducing the IPv6. In this paper, we propose a multiple nodes join mechanism, which includes a timeslot allocation method and secure join process for the IPv6 over IEEE 802.15.4e network. The timeslot allocation method is designed in order to configure communication resources in the join process for the new nodes. The test platform is implemented to verify the feasibility of the mechanism. The result shows that the proposed mechanism can reduce the communication cost for multiple nodes join process and improve the efficiency.
Taib, Abidah Mat, Othman, Nor Arzami, Hamid, Ros Syamsul, Halim, Iman Hazwam Abd.  2019.  A Learning Kit on IPv6 Deployment and Its Security Challenges for Neophytes. 2019 21st International Conference on Advanced Communication Technology (ICACT). :419–424.
Understanding the IP address depletion and the importance of handling security issues in IPv6 deployment can make IT personnel becomes more functional and helpful to the organization. It also applied to the management people who are responsible for approving the budget or organization policy related to network security. Unfortunately, new employees or fresh graduates may not really understand the challenge related to IPv6 deployment. In order to be equipped with appropriate knowledge and skills, these people may require a few weeks of attending workshops or training. Thus, of course involving some implementation cost as well as sacrificing allocated working hours. As an alternative to save cost and to help new IT personnel become quickly educated and familiar with IPv6 deployment issues, this paper presented a learning kit that has been designed to include self-learning features that can help neophytes to learn about IPv6 at their own pace. The kit contains some compact notes, brief security model and framework as well as a guided module with supporting quizzes to maintain a better understanding of the topics. Since IPv6 is still in the early phase of implementation in most of developing countries, this kit can be an additional assisting tool to accelerate the deployment of IPv6 environment in any organization. The kit also can be used by teachers and trainers as a supporting tool in the classroom. The pre-alpha testing has attracted some potential users and the findings proved their acceptance. The kit has prospective to be further enhanced and commercialized.
Liang, Xiao, Chen, Heyao.  2019.  A SDN-Based Hierarchical Authentication Mechanism for IPv6 Address. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :225–225.
The emergence of IPv6 protocol extends the address pool, but it also exposes all the Internet-connected devices to danger. Currently, there are some traditional schemes on security management of network addresses, such as prevention, traceability and encryption authentication, but few studies work on IPv6 protocol. In this paper, we propose a hierarchical authentication mechanism for the IPv6 source address with the technology of software defined network (SDN). This mechanism combines the authentication of three parts, namely the access network, the intra-domain and the inter-domain. And it can provide a fine-grained security protection for the devices using IPv6 addresses.
Li, Chunlei, Wu, Qian, Li, Hewu, Zhou, Jiang.  2019.  SDN-Ti: A General Solution Based on SDN to Attacker Traceback and Identification in IPv6 Networks. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–7.

Network attacks have become a growing threat to the current Internet. For the enhancement of network security and accountability, it is urgent to find the origin and identity of the adversary who misbehaves in the network. Some studies focus on embedding users' identities into IPv6 addresses, but such design cannot support the Stateless Address Autoconfiguration (SLAAC) protocol which is widely deployed nowadays. In this paper, we propose SDN-Ti, a general solution to traceback and identification for attackers in IPv6 networks based on Software Defined Network (SDN). In our proposal, the SDN switch performs a translation between the source IPv6 address of the packet and its trusted ID-encoded address generated by the SDN controller. The network administrator can effectively identify the attacker by parsing the malicious packets when the attack incident happens. Our solution not only avoids the heavy storage overhead and time synchronism problems, but also supports multiple IPv6 address assignment scenarios. What's more, SDN-Ti does not require any modification on the end device, hence can be easily deployed. We implement SDN-Ti prototype and evaluate it in a real IPv6 testbed. Experiment results show that our solution only brings very little extra performance cost, and it shows considerable performance in terms of latency, CPU consumption and packet loss compared to the normal forwarding method. The results indicate that SDN-Ti is feasible to be deployed in practice with a large number of users.

Jain, Jay Kumar, Chauhan, Dipti.  2019.  Analytical Study on Mobile Ad Hoc Networks for IPV6. 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU). :1–6.
The ongoing progressions in wireless innovation have lead to the advancement of another remote framework called Mobile Ad hoc Networks. The Mobile Ad hoc Network is a self arranging system of wireless gadgets associated by wireless connections. The traditional protocol, for example, TCP/IP has restricted use in Mobile impromptu systems in light of the absence of portability and assets. This has lead to the improvement of many steering conventions, for example, proactive, receptive and half breed. One intriguing examination zone in MANET is steering. Steering in the MANETs is a testing assignment and has gotten a colossal measure of consideration from examines. An uncommon consideration is paid on to feature the combination of MANET with the critical highlights of IPv6, for example, coordinated security, start to finish correspondence. This has prompted advancement of various directing conventions for MANETs, and every creator of each developed convention contends that the technique proposed gives an improvement over various distinctive systems considered in the writing for a given system situation. In this way, it is very hard to figure out which conventions may perform best under various diverse system situations, for example, expanding hub thickness and traffic. In this paper, we give the ongoing expository investigation on MANETs for IPV6 systems.
He, Lin, Ren, Gang, Liu, Ying.  2019.  Bootstrapping Accountability and Privacy to IPv6 Internet without Starting from Scratch. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :1486–1494.

Accountability and privacy are considered valuable but conflicting properties in the Internet, which at present does not provide native support for either. Past efforts to balance accountability and privacy in the Internet have unsatisfactory deployability due to the introduction of new communication identifiers, and because of large-scale modifications to fully deployed infrastructures and protocols. The IPv6 is being deployed around the world and this trend will accelerate. In this paper, we propose a private and accountable proposal based on IPv6 called PAVI that seeks to bootstrap accountability and privacy to the IPv6 Internet without introducing new communication identifiers and large-scale modifications to the deployed base. A dedicated quantitative analysis shows that the proposed PAVI achieves satisfactory levels of accountability and privacy. The results of evaluation of a PAVI prototype show that it incurs little performance overhead, and is widely deployable.

Gao, Peng, Yang, Ruxia, Shi, Congcong, Zhang, Xiaojian.  2019.  Research on Security Protection Technology System of Power Internet of Things. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). :1772–1776.

With the rapid development of Internet of Things applications, the power Internet of Things technologies and applications covering the various production links of the power grid "transmission, transmission, transformation, distribution and use" are becoming more and more popular, and the terminal, network and application security risks brought by them are receiving more and more attention. Combined with the architecture and risk of power Internet of Things, this paper first proposes the overall security protection technology system and strategy for power Internet of Things; then analyzes terminal identity authentication and authority control, edge area autonomy and data transmission protection, and application layer cloud fog security management. And the whole process real-time security monitoring; Finally, through the analysis of security risks and protection, the technical difficulties and directions for the security protection of the Internet of Things are proposed.

Mai, Hoang Long, Aouadj, Messaoud, Doyen, Guillaume, Mallouli, Wissam, de Oca, Edgardo Montes, Festor, Olivier.  2019.  Toward Content-Oriented Orchestration: SDN and NFV as Enabling Technologies for NDN. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :594–598.
Network Function Virtualization (NFV) is a novel paradigm which enables the deployment of network functions on commodity hardware. As such, it also stands for a deployment en-abler for any novel networking function or networking paradigm such as Named Data Networking (NDN), the most promising solution relying on the Information-Centric Networking (ICN) paradigm. However, dedicated solutions for the security and performance orchestration of such an emerging paradigm are still lacking thus preventing its adoption by network operators. In this paper, we propose a first step toward a content-oriented orchestration whose purpose is to deploy, manage and secure an NDN virtual network. We present the way we leverage the TOSCA standard, using a crafted NDN oriented extension to enable the specification of both deployment and operational behavior requirements of NDN services. We also highlight NDN-related security and performance policies to produce counter-measures against anomalies that can either come from attacks or performance incidents.
Benmoussa, Ahmed, Tahari, Abdou el Karim, Lagaa, Nasreddine, Lakas, Abderrahmane, Ahmad, Farhan, Hussain, Rasheed, Kerrache, Chaker Abdelaziz, Kurugollu, Fatih.  2019.  A Novel Congestion-Aware Interest Flooding Attacks Detection Mechanism in Named Data Networking. 2019 28th International Conference on Computer Communication and Networks (ICCCN). :1–6.
Named Data Networking (NDN) is a promising candidate for future internet architecture. It is one of the implementations of the Information-Centric Networking (ICN) architectures where the focus is on the data rather than the owner of the data. While the data security is assured by definition, these networks are susceptible of various Denial of Service (DoS) attacks, mainly Interest Flooding Attacks (IFA). IFAs overwhelm an NDN router with a huge amount of interests (Data requests). Various solutions have been proposed in the literature to mitigate IFAs; however; these solutions do not make a difference between intentional and unintentional misbehavior due to the network congestion. In this paper, we propose a novel congestion-aware IFA detection and mitigation solution. We performed extensive simulations and the results clearly depict the efficiency of our proposal in detecting truly occurring IFA attacks.
Zhan, Xin, Yuan, Huabing, Wang, Xiaodong.  2019.  Research on Block Chain Network Intrusion Detection System. 2019 International Conference on Computer Network, Electronic and Automation (ICCNEA). :191–196.

With the development of computer technology and the popularization of network, network brings great convenience to colleagues and risks to people from all walks of life all over the world. The data in the network world is growing explosively. Various kinds of intrusions are emerging in an endless stream. The means of network intrusion are becoming more and more complex. The intrusions occur at any time and the security threats become more and more serious. Defense alone cannot meet the needs of system security. It is also necessary to monitor the behavior of users in the network at any time and detect new intrusions that may occur at any time. This will not only make people's normal network needs cannot be guaranteed, but also face great network risks. So that people not only rely on defensive means to protect network security, this paper explores block chain network intrusion detection system. Firstly, the characteristics of block chain are briefly introduced, and the challenges of block chain network intrusion security and privacy are proposed. Secondly, the intrusion detection system of WLAN is designed experimentally. Finally, the conclusion analysis of block chain network intrusion detection system is discussed.

Aljamal, Ibraheem, Tekeo\u glu, Ali, Bekiroglu, Korkut, Sengupta, Saumendra.  2019.  Hybrid Intrusion Detection System Using Machine Learning Techniques in Cloud Computing Environments. 2019 IEEE 17th International Conference on Software Engineering Research, Management and Applications (SERA). :84–89.

Intrusion detection is one essential tool towards building secure and trustworthy Cloud computing environment, given the ubiquitous presence of cyber attacks that proliferate rapidly and morph dynamically. In our current working paradigm of resource, platform and service consolidations, Cloud Computing provides a significant improvement in the cost metrics via dynamic provisioning of IT services. Since almost all cloud computing networks lean on providing their services through Internet, they are prone to experience variety of security issues. Therefore, in cloud environments, it is necessary to deploy an Intrusion Detection System (IDS) to detect new and unknown attacks in addition to signature based known attacks, with high accuracy. In our deliberation we assume that a system or a network ``anomalous'' event is synonymous to an ``intrusion'' event when there is a significant departure in one or more underlying system or network activities. There are couple of recently proposed ideas that aim to develop a hybrid detection mechanism, combining advantages of signature-based detection schemes with the ability to detect unknown attacks based on anomalies. In this work, we propose a network based anomaly detection system at the Cloud Hypervisor level that utilizes a hybrid algorithm: a combination of K-means clustering algorithm and SVM classification algorithm, to improve the accuracy of the anomaly detection system. Dataset from UNSW-NB15 study is used to evaluate the proposed approach and results are compared with previous studies. The accuracy for our proposed K-means clustering model is slightly higher than others. However, the accuracy we obtained from the SVM model is still low for supervised techniques.

2020-01-20
Rasheed, Amar, Hashemi, Ray R., Bagabas, Ayman, Young, Jeffrey, Badri, Chanukya, Patel, Keyur.  2019.  Configurable Anonymous Authentication Schemes For The Internet of Things (IoT). 2019 IEEE International Conference on RFID (RFID). :1–8.
The Internet of Things (IoT) has revolutionized the way of how pervasive computing devices communicate and disseminate information over the global network. A plethora of user data is collected and logged daily into cloud-based servers. Such data can be analyzed by the IoT infrastructure to capture users' behaviors (e.g. users' location, tagging of smart home occupancy). This brings a new set of security challenges, specifically user anonymity. Existing access control and authentication technologies failed to support user anonymity. They relied on the surrendering of the device/user authentication parameters to the trusted server, which hence could be utilized by the IoT infrastructure to track users' behavioral patterns. This paper, presents two novel configurable privacy-preserving authentication schemes. User anonymity capabilities were incorporated into our proposed authentication schemes through the implementation of two crypto-based approaches (i) Zero Knowledge Proof (ZKP) and (ii) Verifiable Common Secret Encoding (VCSE). We consider a user-oriented approach when determining user anonymity. The proposed authentication schemes are dynamically capable of supporting various levels of user privacy based on the user preferences. To validate the two schemes, they were fully implemented and deployed on an IoT testbed. We have tested the performance of each proposed schemes in terms of power consumption and computation time. Based on our performance evaluation results, the proposed ZKP-based approach provides better performance compared to the VCSE-based approach.
Zhu, Lipeng, Fu, Xiaotong, Yao, Yao, Zhang, Yuqing, Wang, He.  2019.  FIoT: Detecting the Memory Corruption in Lightweight IoT Device Firmware. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :248–255.
The IoT industry has developed rapidly in recent years, which has attracted the attention of security researchers. However, the researchers are hampered by the wide variety of IoT device operating systems and their hardware architectures. Especially for the lightweight IoT devices, many manufacturers do not provide the device firmware images, embedded firmware source code or even the develop documents. As a result, it hinders traditional static analysis and dynamic analysis techniques. In this paper, we propose a novel dynamic analysis framework, called FIoT, which aims at finding memory corruption vulnerabilities in lightweight IoT device firmware images. The key idea is dynamically run the binary code snippets through symbolic execution with carrying out a fuzzing test. Specifically, we generate code snippets through traversing the control-flow graph (CFG) in a backward manner. We improved the CFG recovery approach and backward slice approach for better performance. To reduce the influence of the binary firmware, FIoT leverages loading address determination analysis and library function identification approach. We have implemented a prototype of FIoT and conducted experiments. Our results show that FIoT can complete the Fuzzing test within 40 seconds in average. Considering 170 seconds for static analysis, FIoT can load and analyze a lightweight IoT firmware within 210 seconds in total. Furthermore, we illustrate the effectiveness of FIoT by applying it over 115 firmware images from 17 manufacturers. We have found 35 images exist memory corruptions, which are all zero-day vulnerabilities.
Ingols, Kyle, Chu, Matthew, Lippmann, Richard, Webster, Seth, Boyer, Stephen.  2009.  Modeling Modern Network Attacks and Countermeasures Using Attack Graphs. 2009 Annual Computer Security Applications Conference. :117–126.
By accurately measuring risk for enterprise networks, attack graphs allow network defenders to understand the most critical threats and select the most effective countermeasures. This paper describes substantial enhancements to the NetSPA attack graph system required to model additional present-day threats (zero-day exploits and client-side attacks) and countermeasures (intrusion prevention systems, proxy firewalls, personal firewalls, and host-based vulnerability scans). Point-to-point reachability algorithms and structures were extensively redesigned to support "reverse" reachability computations and personal firewalls. Host-based vulnerability scans are imported and analyzed. Analysis of an operational network with 84 hosts demonstrates that client-side attacks pose a serious threat. Experiments on larger simulated networks demonstrated that NetSPA's previous excellent scaling is maintained. Less than two minutes are required to completely analyze a four-enclave simulated network with more than 40,000 hosts protected by personal firewalls.
Sun, Xiaoyan, Dai, Jun, Liu, Peng, Singhal, Anoop, Yen, John.  2016.  Towards probabilistic identification of zero-day attack paths. 2016 IEEE Conference on Communications and Network Security (CNS). :64–72.
Zero-day attacks continue to challenge the enterprise network security defense. A zero-day attack path is formed when a multi-step attack contains one or more zero-day exploits. Detecting zero-day attack paths in time could enable early disclosure of zero-day threats. In this paper, we propose a probabilistic approach to identify zero-day attack paths and implement a prototype system named ZePro. An object instance graph is first built from system calls to capture the intrusion propagation. To further reveal the zero-day attack paths hiding in the instance graph, our system constructs an instance-graph-based Bayesian network. By leveraging intrusion evidence, the Bayesian network can quantitatively compute the probabilities of object instances being infected. The object instances with high infection probabilities reveal themselves and form the zero-day attack paths. The experiment results show that our system can effectively identify zero-day attack paths.
Musca, Constantin, Mirica, Emma, Deaconescu, Razvan.  2013.  Detecting and Analyzing Zero-Day Attacks Using Honeypots. 2013 19th International Conference on Control Systems and Computer Science. :543–548.

Computer networks are overwhelmed by self propagating malware (worms, viruses, trojans). Although the number of security vulnerabilities grows every day, not the same thing can be said about the number of defense methods. But the most delicate problem in the information security domain remains detecting unknown attacks known as zero-day attacks. This paper presents methods for isolating the malicious traffic by using a honeypot system and analyzing it in order to automatically generate attack signatures for the Snort intrusion detection/prevention system. The honeypot is deployed as a virtual machine and its job is to log as much information as it can about the attacks. Then, using a protected machine, the logs are collected remotely, through a safe connection, for analysis. The challenge is to mitigate the risk we are exposed to and at the same time search for unknown attacks.

Clark, Shane S., Paulos, Aaron, Benyo, Brett, Pal, Partha, Schantz, Richard.  2015.  Empirical Evaluation of the A3 Environment: Evaluating Defenses Against Zero-Day Attacks. 2015 10th International Conference on Availability, Reliability and Security. :80–89.

A3 is an execution management environment that aims to make network-facing applications and services resilient against zero-day attacks. A3 recently underwent two adversarial evaluations of its defensive capabilities. In one, A3 defended an App Store used in a Capture the Flag (CTF) tournament, and in the other, a tactically relevant network service in a red team exercise. This paper describes the A3 defensive technologies evaluated, the evaluation results, and the broader lessons learned about evaluations for technologies that seek to protect critical systems from zero-day attacks.

Noura, Hassan, Chehab, Ali, Couturier, Raphael.  2019.  Lightweight Dynamic Key-Dependent and Flexible Cipher Scheme for IoT Devices. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–8.

Security attacks against Internet of Things (IoT) are on the rise and they lead to drastic consequences. Data confidentiality is typically based on a strong symmetric-key algorithm to guard against confidentiality attacks. However, there is a need to design an efficient lightweight cipher scheme for a number of applications for IoT systems. Recently, a set of lightweight cryptographic algorithms have been presented and they are based on the dynamic key approach, requiring a small number of rounds to minimize the computation and resource overhead, without degrading the security level. This paper follows this logic and provides a new flexible lightweight cipher, with or without chaining operation mode, with a simple round function and a dynamic key for each input message. Consequently, the proposed cipher scheme can be utilized for real-time applications and/or devices with limited resources such as Multimedia Internet of Things (MIoT) systems. The importance of the proposed solution is that it produces dynamic cryptographic primitives and it performs the mixing of selected blocks in a dynamic pseudo-random manner. Accordingly, different plaintext messages are encrypted differently, and the avalanche effect is also preserved. Finally, security and performance analysis are presented to validate the efficiency and robustness of the proposed cipher variants.

Halimaa A., Anish, Sundarakantham, K..  2019.  Machine Learning Based Intrusion Detection System. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :916–920.

In order to examine malicious activity that occurs in a network or a system, intrusion detection system is used. Intrusion Detection is software or a device that scans a system or a network for a distrustful activity. Due to the growing connectivity between computers, intrusion detection becomes vital to perform network security. Various machine learning techniques and statistical methodologies have been used to build different types of Intrusion Detection Systems to protect the networks. Performance of an Intrusion Detection is mainly depends on accuracy. Accuracy for Intrusion detection must be enhanced to reduce false alarms and to increase the detection rate. In order to improve the performance, different techniques have been used in recent works. Analyzing huge network traffic data is the main work of intrusion detection system. A well-organized classification methodology is required to overcome this issue. This issue is taken in proposed approach. Machine learning techniques like Support Vector Machine (SVM) and Naïve Bayes are applied. These techniques are well-known to solve the classification problems. For evaluation of intrusion detection system, NSL- KDD knowledge discovery Dataset is taken. The outcomes show that SVM works better than Naïve Bayes. To perform comparative analysis, effective classification methods like Support Vector Machine and Naive Bayes are taken, their accuracy and misclassification rate get calculated.

Elisa, Noe, Yang, Longzhi, Fu, Xin, Naik, Nitin.  2019.  Dendritic Cell Algorithm Enhancement Using Fuzzy Inference System for Network Intrusion Detection. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–6.

Dendritic cell algorithm (DCA) is an immune-inspired classification algorithm which is developed for the purpose of anomaly detection in computer networks. The DCA uses a weighted function in its context detection phase to process three categories of input signals including safe, danger and pathogenic associated molecular pattern to three output context values termed as co-stimulatory, mature and semi-mature, which are then used to perform classification. The weighted function used by the DCA requires either manually pre-defined weights usually provided by the immunologists, or empirically derived weights from the training dataset. Neither of these is sufficiently flexible to work with different datasets to produce optimum classification result. To address such limitation, this work proposes an approach for computing the three output context values of the DCA by employing the recently proposed TSK+ fuzzy inference system, such that the weights are always optimal for the provided data set regarding a specific application. The proposed approach was validated and evaluated by applying it to the two popular datasets KDD99 and UNSW NB15. The results from the experiments demonstrate that, the proposed approach outperforms the conventional DCA in terms of classification accuracy.

Sivanantham, S., Abirami, R., Gowsalya, R..  2019.  Comparing the Performance of Adaptive Boosted Classifiers in Anomaly based Intrusion Detection System for Networks. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–5.

The computer network is used by billions of people worldwide for variety of purposes. This has made the security increasingly important in networks. It is essential to use Intrusion Detection Systems (IDS) and devices whose main function is to detect anomalies in networks. Mostly all the intrusion detection approaches focuses on the issues of boosting techniques since results are inaccurate and results in lengthy detection process. The major pitfall in network based intrusion detection is the wide-ranging volume of data gathered from the network. In this paper, we put forward a hybrid anomaly based intrusion detection system which uses Classification and Boosting technique. The Paper is organized in such a way it compares the performance three different Classifiers along with boosting. Boosting process maximizes classification accuracy. Results of proposed scheme will analyzed over different datasets like Intrusion Detection Kaggle Dataset and NSL KDD. Out of vast analysis it is found Random tree provides best average Accuracy rate of around 99.98%, Detection rate of 98.79% and a minimum False Alarm rate.

Ou, Chung-Ming.  2019.  Host-based Intrusion Detection Systems Inspired by Machine Learning of Agent-Based Artificial Immune Systems. 2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA). :1–5.

An adaptable agent-based IDS (AAIDS) inspired by the danger theory of artificial immune system is proposed. The learning mechanism of AAIDS is designed by emulating how dendritic cells (DC) in immune systems detect and classify danger signals. AG agent, DC agent and TC agent coordinate together and respond to system calls directly rather than analyze network packets. Simulations show AAIDS can determine several critical scenarios of the system behaviors where packet analysis is impractical.